화학공학소재연구정보센터
Langmuir, Vol.24, No.14, 7099-7106, 2008
Cationic temperature-responsive poly(N-isopropyl acrylamide) graft copolymers: from triggered association to gelation
In this work temperature-triggered association and gel formation within aqueous solutions of a new family of cationic poly(N-isopropyl acrylamide) (PNIPAm) graft copolymers have been investigated. Five copolymers were synthesized using aqueous atom transfer radical polymerization (ATRP) involving a macroinitiator based on quaternarized N,N-dimethylaminoethyl methacrylate units (DMA(+)). The PDMA(x)(+)-g-(PNIPAmn)(y) copolymers have x and y values that originate from the macroinitiator; values for n correspond to the PNIPAm arm length. The copolymer solutions exhibited temperature-triggered formation of nanometer-sized aggregates at the cloud point temperature, which was 33-34 degrees C. The aggregates were investigated using variable-temperature turbidity, hydrodynamic diameter, and electrophoretic mobility measurements. The aggregates were clearly evident using SEM and flowerlike or spherical morphologies were observed. Variable-temperature electrophoretic mobility measurements revealed that the zeta potentials of the aggregates increased with DMA content. A study of the effect of added NaNO3 showed that electrostatic interactions controlled the size of the aggregates. The concentrated graft copolymer solutions showed temperature-triggered gelation when the copolymer concentrations exceeded 5 wt %, Fluid-to-gel phase diagrams were constructed. It was found that electrostatic interactions also controlled the gelation temperature. A correlation was found between aggregate size and the minimum copolymer concentration needed to form a gel. A mechanism for the temperature-triggered structural changes leading to the formation of aggregates (in dilute solution) or gels (in concentrated solutions) is proposed.