화학공학소재연구정보센터
Langmuir, Vol.24, No.18, 10293-10297, 2008
Functional gold nanoparticle-peptide complexes as cell-targeting agents
In this paper, we report a novel approach using peptide CALNN and its derivative CALNNGGRRRRRRRR (CALNNR(8)) to functionalize gold nanoparticles for intracellular component targeting. The translocation is effected by the nanoparticle diameter and CALNNR8 surface coverage. The intracellular distributions of the complexes are change from the cellular nucleus to the endoplasmic reticulum by increasing the density of CALNNR8 at a constant nanoparticle diameter. Additionally, increasing the nanoparticle diameter at a constant density of CALNNR8 leads to less cellular internalization. These translocations of the complexes cause unique colorimetric expressions of the cell structure. The cell viability is affected by the internalized gold nanoparticle-peptide complexes in terms of quantities of particles per cell. In addition, the intracellular distribution of the fluorescence quenching is investigated by a fluorescent confocal scanning laser microscopy, which also gives further evidence of intracellular distribution of the gold nanoparticle-peptide complexes.