화학공학소재연구정보센터
Langmuir, Vol.24, No.21, 12575-12580, 2008
Complex Langmuir-Blodgett Films of SiO2 and ZnO Nanoparticles with Advantageous Optical and Photocatalytical Properties
Multifunctional Langmuir-Blodgett (LB) films were fabricated oil the surface of glass substrates using sol-gel derived ZnO and SiO2 particles. ZnO particles of 6 and 110 nm diameter were synthesized according to the methods of Meulenkamp and Seelig et al. (Meulenkamp, E. A. J. Phys. Chem. B 1998, 102, 5566; Seelig, E. W.; Tang, B.; Yamilov, A.; Cao, H.; Chang, R. P. H. Mater. Chem. Phys. 2003, 80, 257). Silica particles of 37 and 96 nm were prepared by the Stober method (Stober, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62). Alternate deposition of monoparticulate Langmuir films of SiO2 and ZnO nanoparticles provided complex (six- and nine-layered) LB films with both antireflective and photocatalytic properties. The LB films were investigated with scanning electron microscopy (morphology and structure) and UV-vis spectroscopy (optical properties and stability). The photocatalytic activity was measured by immersing the UV-irradiated films into an aqueous solution of Methyl Orange and following the photodegradation of the dye by optical spectroscopy. Adding ZnO particles to the silica films slightly lowered the antireflection property but ensured strong photocatalytic activity. Both the photocatalytic activity and antireflection properties were proved to be sensitive to the sequence of the silica and ZnO layers, with optimum properties in the case of nine-layered films with a repeated (SiO2-ZnO-ZnO) structure.