화학공학소재연구정보센터
Langmuir, Vol.25, No.2, 944-951, 2009
Phenomenological Study of Monomer Adsorption on fcc (335) Surfaces With Application to CO, O, and N-2 Adsorption on Pt(335)
We extend our recent study of adsorption on fcc (112) to fcc (335) surfaces, still considering only first- and second-neighbor interactions with repulsive first-neighbors. We consider the adsorbate-substrate interaction on the step sites of one of the two edges of the infinitely long terraces to be different from that on the remaining sites. The adsorption features on fcc (335) surfaces are richer than those on fcc (112), which can be attributed to the fact that the equilateral triangular terraces are now four-atoms wide rather than three. Our approach is independent of the chemical composition of the substrate and adsorbates and consequently may be applied to a variety of adsorption systems on fcc (335) surfaces which satisfy the limitations of our model. The basic question that our phenomenological approach intends to answer is: what are the constraints that can be obtained on the interaction energies from the experimental observation of one or more phases? This question is answered in the cases of CO, O, and N-2 adsorbed on Pt(335).