Langmuir, Vol.25, No.6, 3529-3537, 2009
Colloidal Stability Dependence on Polymer Adsorption through Disjoining Pressure Isotherms
The disjoining pressure of polymers confined by colloidal walls was computed using dissipative particle dynamics simulations at constant chemical potential, volume, and temperature. The polymers are able to adsorb on the surfaces according to two models. In the so-called surface-modifying polymers, all monomers composing the chains have the same affinity for the substrate, whereas for the end-grafted polymer only the monomer at one of the ends of the polymer molecule adsorbs on the colloidal surface, resembling the behavior of dispersing agents. We find that these adsorption models yield markedly different disjoining pressure isotherms, which in turn predict different stability conditions for the colloidal dispersion. Our results show that for end-grafted polymers, a larger degree of polymerization at the same monomer concentration leads to better stability than for the surface-modifying ones. But also the unbound monomers of the surface-modifying type dominate over both kinds of polymers at large surface distances. The origin of these differences when the chemical nature of monomers is the same, and molecular weight and polymer concentration are used to characterize colloidal stability, is found to be mainly entropic.