Langmuir, Vol.25, No.17, 9797-9803, 2009
Photoimaging with Singlet Oxygen at the Solid-Air Interface
Films of anthracene carboxylic acids were irradiated through photomasks and oxidized at the exposed regions by singlet oxygen upon sensitization. The efficiency of a photomask to protect the material underneath was investigated by optical and infrared spectroscopy. As the thickness of the film is reduced, the efficiency of the mask drops. This is explained by the migration of singlet oxygen at the solid-air interface, which in turn reacts at the masked area. For films with a thickness of < 15 nm, the efficiency of the mask approaches zero: sufficient efficiency is achieved at thicknesses > 100 nm. From the investigations, it will become clear that the contrast between the irradiated and masked area of an image is affected by reduction of the film thickness. On the other hand, the resolution of an image, which relates to the minimum feature size of an image, is not dependent on the thickness of the film. The contributions of "inside" and "outside" reactions are examined separately, and it quantitative approximation of the spatial range of both modes of the oxygenation is given. We set tip an approximate relation between mask efficiency and experimental conditions comprising internal and external oxygen diffusion, film thickness, and mask dimensions. These results give it deeper insight into the limits of resolution and contrast in singlet oxygen lithography.