Langmuir, Vol.26, No.6, 3894-3901, 2010
Photodegradation of Rhodamine B and Methyl Orange over Boron-Doped g-C3N4 under Visible Light Irradiation
Graphitic carbon nitride (g-C3N4) and boron-doped g-C3N4 Were prepared by heating melamine and the mixture of melamine and boron oxide, respectively. X-ray diffraction, X-ray photoelectron spectroscopy, and UV-vis spectra were used to describe the properties of as-prepared samples, The electron paramagnetic resonance was used to detect the active species for the photodegradation reaction over g-C3N4. The photodegradation mechanisms for two typical dyes, rhodamine B (Rh B) and methyl orange (MO), are proposed based on our comparison experiments. In the g-C3N4 photocatalysis system, the photodegradation of Rh B and MO is attributed to the direct hole oxidation and overall reaction, respectively; however, for the MO photodegradation the reduction process initiated by photogenerated electrons is a major photocatalytic process compared with the oxidation process induced by photogenerated holes. Boron doping for g-C3N4 can promote photodegradation of Rh B because the boron doping improves the dye adsorption and light absorption of catalyst.