Materials Chemistry and Physics, Vol.110, No.1, 61-67, 2008
Spectral studies on the interaction of acetylacetone with aluminum-containing MCM-41 mesoporous materials
Diffuse reflectance spectroscopy (DRS) was used to study the interaction of acetylacetone (acac) with the mesoporous aluminum-containing MCM-41 materials. A room temperature synthesis method was used for preparation of purely siliceous MCM-41 and for aluminum-containing MCM-41 materials. Samples with Si/Al ratios of 50, 20, 10 and 5 were synthesized. The synthesized mesoporous materials possess highly ordered structure and high surface area as evidenced from X-ray diffraction and nitrogen physisorption measurements, respectively. The treatment of the as-synthesized aluminum-containing MCM-41 samples with acac shows a distinct band at approximate to 290nm. This band is assigned to six coordinated aluminum atoms in the structure which is produced by diffusion of acac molecules through surfactant micelles and their interaction with aluminum atoms. The 290-nm band disappears upon several successive washing of the sample with ethanol. The treatment of the calcined aluminum-containing MCM-41 sample with acac produces the same 290-nm band where its intensity increases with the aluminum content of the sample. The intensity of this band is reduced upon successive ethanol washing, but remains nearly constant after three times washing. This irremovable aluminum species can be assigned to framework aluminum. The measured acidity for our aluminum-containing MCM-41 samples correlates linearly with the intensity of 290-nm band for the ethanol treated samples. This supports the idea that the Bronsted acidity in aluminum-modified MCM-41 samples is a function of the amount of tetrahedral framework aluminum in the structure. (c) 2008 Elsevier B.V. All rights reserved.