화학공학소재연구정보센터
Macromolecular Research, Vol.18, No.3, 222-226, March, 2010
Biological templating of polyaniline and polypyrrole using E. coli
E-mail:
This study evaluated a simple method for preparing microstructures of polyaniline (PANI) and polypyrrole (PPy) using a different concentrations of Escherichia coli (E. coli) as a biological template. Scanning electron microscopy and transmission electron microscopy revealed fibers, cones/spheres, and agglomerated fiber structures with dimensions ranging from 0.5 to 1 mu m. The results yielded structures with shapes that varied according to the E. coli concentration. Based on these results, this study suggests that the biological templating approach can be a superior alternative to preparing and fabricating conducting polymers that may be useful for obtaining nano- or micromaterials and devices.
  1. Ariga K, Hill JP, Lee ML, Vinu A, Charvet R, Acharya S, Sci. Technol. Adv. Mater., 9, 014109 (2008)
  2. Zh N, Liu J, Lee LA, Bruckman MA, Zhao D, Koley G, Wang Q, Nano Lett., 7, 3729 (2007)
  3. Gregory FP, Curr. Opin. Chem. Biol., 11, 214 (2007)
  4. Wang P, Dordick JS, Macromolecules, 31(3), 941 (1998)
  5. Wei XL, Wang YZ, Long SM, Bobeczko C, Epstein AJ, J. Am. Chem. Soc., 118(11), 2545 (1996)
  6. Chen SA, Hwang GW, Macromolecules, 29(11), 3950 (1996)
  7. Namgoong H, Woo DJ, Lee SH, Macromol. Res., 15(7), 633 (2007)
  8. Kwon JY, Kim EY, Kim HD, Macromol. Res., 12(3), 303 (2004)
  9. Dunford HB, in Peroxidases in Chemistry and Biology, Everse J, Everse KE, Grisham MB, Eds., CRC Press, Boca Raton, 1991, FL 2 1p.
  10. Saunders BC, Holmes-Siedle AG, Stark BP, in Peroxidase, Butterworths, London, 1964.
  11. Ikeda R, Uyama H, Kobayashi S, Macromolecules, 29(8), 3053 (1996)
  12. Berdichevsky Y, Lo YH, Adv. Mater., 18(1), 122 (2006)
  13. Huang J, Kaner RB, Angew. Chem.-Int. Edit., 43, 5817 (2004)
  14. Han J, Song GP, Guo R, Adv. Mater., 19(19), 2993 (2007)
  15. Zhou CQ, Han J, Song GP, Guo R, Macromolecules, 40(20), 7075 (2007)
  16. Trchova M, Sedenkova I, Konyushenko EN, Stejskal J, Holler P, Ciric-Marjanovic G, J. Phys. Chem. B, 110(19), 9461 (2006)
  17. Yong W, Liu ZM, Han BX, Sun ZY, Ying H, Yang GY, Langmuir, 21(3), 833 (2005)
  18. Zhang LJ, Wan MX, Wei Y, Macromol. Rapid Commun., 27(5), 366 (2006)
  19. Li GC, Jiang L, Peng HR, Macromolecules, 40(22), 7890 (2007)
  20. Blinova NV, Stejskal J, Trchova M, Prokes J, Omastova M, Eur. Polym. J., 43, 2331 (2007)
  21. Zhou CQ, Han J, Guo R, Macromolecules, 42(4), 1252 (2009)
  22. Meredith P, Powell BJ, Riesz J, Nighswander-Rempel SP, Pederson MR, Moore EG, Soft. Matter., 2, 37 (2006)
  23. Seagle BLL, Rezai KA, Gasyna EM, Kobori Y, Rezaei KA, Norris JR, J. Am. Chem. Soc., 127(32), 11220 (2005)
  24. Wu LQ, Ghodssi R, Elabd YA, Payne GF, Adv. Funct. Mater., 15(2), 189 (2005)
  25. Tortora GJ, Funke BR, Case CL, Microbiologia, 6th ed., Porto Artmed 827, 2000.
  26. Black GJ, Microbiologia: Fundamentos e Perspectives, 4th ed., Rio de Janeiro, Editora Guanabara Koogan S. A. 829 (2002).
  27. Miller E, Garcia T, Hultgren S, Andres FB, Biophys. J., 91, 3848 (2006)
  28. Basavaraja C, Veeranagouda Y, Lee K, Pierson R, Huh DS, J. Polym. Sci. B: Polym. Phys., 47(1), 36 (2009)
  29. Basavaraja C, Pierson R, Huh DS, J. Appl. Polym. Sci., 108(2), 1070 (2008)
  30. Basavaraja C, Pierson R, Vishnuvardhan TK, Huh DS, Eur. Polym. J., 44, 556 (2008)
  31. Yan XB, Han ZJ, Yang Y, Tay BK, J. Phys. Chem. C, 111, 4125 (2007)
  32. Mazur M, Tagowska M, Palys B, Jackowska K, Electrochem. Commun., 5, 403 (2003)
  33. Vishnuvardhan TK, Kulkarni VR, Basavaraja C, Raghavendra SC, Bull. Mater. Sci., 29, 77 (2006)
  34. Basavaraja C, Choi YM, Park HT, Huh DS, Lee JW, Revanasiddappa M, Raghavendra SC, Khasim S, Vishnuvardhan TK, Bull. Korean Chem. Soc., 28, 1104 (2007)
  35. Saunders BR, Saunders JM, Mrkic J, Dunlop EH, Phys. Chem. Chem. Phys., 1, 1563 (1999)
  36. Nagarajan R, Liu W, Kumar J, Tripathy SK, Bruno FF, Samuelson LA, Macromolecules, 34(12), 3921 (2001)