화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.48, No.2, 185-192, April, 2010
상호 연결된 유동층 매체 순환식 연소로의 수력학적 특성
Hydrodynamic Properties of Interconnected Fluidized Bed Chemical-Looping Combustors
E-mail:
초록
매체 순환식 연소는 연소 공정 자체에서 질소 산화물 생성이나 부가적인 에너지 소비 없이 이산화탄소 분리가 이루어지는 신공정이다. 이 공정은 금속 산화물 입자가 두 개의 반응기를 순환하며 산화와 환원을 거치는 과정으로 구성되어 있다. 이 연구에서는 bentonite에 담지된 산화철 산소 공여 입자의 반응 속도 식을 shrinking core 모델을 통하여 수립하였다. 반응성 결과를 바탕으로 반응기 설계 기준인 고체 순환량과 입자 충전량을 도출하였다. 매체 순환식 연소 공정의 적용을 위하여 두 가지 형태의 연결된 유동층 즉, 상승관과 기포 유동층이 각각 한 개씩인 형태, 상승관 한 개와 기포 유동층이 두 개로 구성된 형태로 시스템을 설계하였다. 고체 순환량은 loop-seal을 통하여 30 kg/m2s 정도까지 변화시켰다. 고체 순환량은 loop-seal의 기체 주입량이 증가할수록 증가하였으며 보조 기체를 주입하면 그 양이 더 증대 되었다. 고체 순환량이 증가함에 따라 상승관 내부의 고체량은 증가하였다. 상승관으로부터 다른 반응기로의 기체 누출량은 1% 미만의 수준이었다.
The chemical-looping combustion(CLC) has advantages of no energy loss for separation of CO2 without NOx formation. This CLC system consists of oxidation and reduction reactors where metal oxides particles are circulating through these two reactors. In the present study, the reaction kinetic equations of iron oxide oxygen carriers supported on bentonite have been determined by the shrinking core model. Based on the reactivity data, design values of solid circulation rate and solids inventory were determined for the rector. Two types of interconnected fluidized bed systems were designed for CLC application, one system consists of a riser and a bubbling fluidized bed, and the other one has a riser and two bubbling fluidized beds. Solid circulation rates were varied to about 30 kg/m2s by aeration into a loop-seal. Solid circulation rate increases with increasing aeration velocity and it increases further with an auxiliary gas flow into the loop-seal. As solid circulation rate is increased, solid hold up in the riser increases. A typical gas leakage from the riser to the fluidized bed is found to be less than 1%.
  1. Ishida M, Zheng D, Akehata T, Energy, 12, 147 (1987)
  2. Lyngfelt A, Leckner B, Mattisson T, Chem. Eng. Sci., 56(10), 3101 (2001)
  3. Mattisson T, Jardnas A, Lyngfelt A, Energy Fuels, 17(3), 643 (2003)
  4. Kronberger B, Johansson E, Loffler G, Mattisson T, Lyngfelt A, Hofbauer H, Chem. Eng. Technol., 27(12), 1318 (2004)
  5. Abad A, Mattisson T, Lyngfelt A, Ryden M, Fuel, 85, 1174 (2006)
  6. Johansson E, Mattisson T, Lyngfelt A, Thunman H, Fuel, 85, 1428 (2006)
  7. Ryden M, Lyngfelt A, Mattisson T, Fuel, 85, 1631 (2006)
  8. Abad A, Mattisson T, Lyngfelt A, Johansson M, Fuel, 86, 1021 (2007)
  9. Johansson E, Lyngfelt A, Mattisson T, Johnsson F, Powder Technol., 134(3), 210 (2003)
  10. Kronberger B, Lyngfelt A, Loffler G, Hofbauer H, Ind. Eng. Chem. Res., 44(3), 546 (2005)
  11. Mattisson T, Garcia-Labiano F, Kronberger B, Lyngfelt A, Adanez J, Hofbauer H, Int. J. Greenhouse Gas Control, 1, 158 (2007)
  12. Adanez J, Gayan P, Celaya J, de Diego LF, Garcia-Labiano F, Abad A, Ind. Eng. Chem. Res., 45(17), 6075 (2006)
  13. De Diego LF, Garcia-Labiano F, Gayan P, Celaya J, Palacios JM, Adanez J, Fuel, 86, 1036 (2007)
  14. Ryu HJ, Jin GT, Yi CK, Proceedings of 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada, September 5-9, 1907-1910 (2004)
  15. Son SR, Kim SD, Ind. Eng. Chem. Res., 45(8), 2689 (2006)
  16. Ryu HJ, Jin GT, Energy Engg. J., 12, 289 (2003)
  17. Abad A, Adanez J, Garcia-Labiano F, de Diego LF, Gayan P, Celaya J, Chem. Eng. Sci., 62(1-2), 533 (2007)
  18. Basu P, Fraser SA, Circulating Fluidized Bed Boilers: Design and Operations, Butterworth-Heinemann, MA, 229 (1991)
  19. Basu P, Luo Z, Boyd M, Cheng L, Cen K, Proceedings of 6th International Conference on Circulating Fluidized Beds, Wurzburg, Germany, August 22-27, 805-810 (1999)
  20. Levenspiel O, Chemical Reaction Engineering, 3rd ed., John Wiley & Sons, NY, 566 (1999)
  21. Kasaoka S, Skata T, Tong C, Int. Chem. Eng., 25, 160 (1985)
  22. Ryu HJ, Bae DH, Han KH, Lee SY, Jin GT, Choi JH, Korean J. Chem. Eng., 18(6), 831 (2001)
  23. Garcia-Labiano F, de Diego LF, Adanez J, Abad A, Gayan P, Ind. Eng. Chem. Res., 43(26), 8168 (2004)
  24. Kim SW, Namkung W, Kim SD, Chem. Eng. Technol., 24(8), 843 (2001)
  25. Kim SW, Kim SD, Powder Technol., 124(1-2), 76 (2002)
  26. Rhodes MJ, Laussman P, Can. J. Chem. Eng., 70, 625 (1992)