화학공학소재연구정보센터
Clean Technology, Vol.16, No.1, 12-18, March, 2010
KF/MgO 촉매를 이용한 Dibenzothiophene Sulfone 분해반응
Decomposition of Dibenzothiophene Sulfone over KF/MgO Catalysts
E-mail:
초록
본 연구의 목적은 산화탈황 공정의 부산물인 dibenzothiophene sulfone의 분해반응용 KF/MgO 촉매를 개발하는 것이다. MgO 지지체에 KF를 담지시켜 KF/MgO 촉매를 제조하였다. KF 담지량 및 소성 효과 등이 촉매 특성에 미치는 영향을 BET표면적, XRF, XRD, 이산화탄소 승온탈착 실험 등을 통해서 분석하였다. Dibenzothiophene sulfone을 biphenyl 과 이산화황으로 분해하는 반응에서의 촉매 특성을 조사하였다. MgO 촉매에 KF를 담지하면 DBTS 분해반응 활성이 증가하였다. KF/MgO 촉매를 제조하여 373 K에서 건조과정만 거친 촉매의 활성이 고온에서 소성을 거친 촉매의 활성보다 높았으며, 이는 fluoride 이온 (F-)이 염기도를 증가시키는 역할을 하기 때문으로 판단된다. KF를 10 wt% 담지한 촉매가 dibenzothiophene sulfone 분해 반응에서 가장 뛰어난 활성을 보였다.
The object of the present study is to apply KF/MgO catalysts to remove sulfur dioxide from dibenzothiophene sulfone, a by-product of oxidative desulfurization. Potassium fluoride was deposited via an impregnation method on MgO. The effects KF loading and calcination on the characteristics of the KF/MgO catalysts were investigated through the BET surface area, XRF, XRD, and temperature-programmed desorption of CO2. The catalytic performances of the samples were investigated during the decomposition of dibenzothiophene sulfone to biphenyl and sulfur dioxide gas. KF loaded on MgO prepared by the impregnation method showed high catalytic activities for the decomposition of dibenzothiophene sulfone. The higher activity of KF/MgO just dried at 373 K, avoiding the usual activation at high temperature, than that over the calcined catalyst is ascribed to increase of the amount of basic sites. The high basicity probably may be due to the coordinately unsaturated F-. The simply dried 10 % KF/MgO catalyst, without the usual activation at high temperature, showed the optimal catalytic properties.
  1. Sampanthar JT, Xiao H, Dou H, Nah TY, Rong X, Kwan WP, Appl. Catal. B: Environ., 63(1-2), 85 (2006)
  2. Prasad VVDN, Jeong KE, Chae HJ, Kim CU, Jeong SY, Catal. Comm,, 9, 1966 (2008)
  3. Lu L, Cheng SF, Gao JB, Gao GH, He MY, Energy Fuels, 21(1), 383 (2007)
  4. Liu S, Wang B, Cui B, Sun L, Fuel, 87, 422 (2008)
  5. Ishihara A, Wang DH, Dumeignil F, Amano H, Qian EWH, Kabe T, Appl. Catal. A: Gen., 279(1-2), 279 (2005)
  6. Otsuki S, Nonaka T, Takashima N, Qian WH, Ishihara A, Imai T, Kabe T, Energy Fuels, 14(6), 1232 (2000)
  7. Campos-Martin JM, Capel-Sanchez MC, Fierro JLG, Green Chem., 6, 557 (2004)
  8. Jeong KE, Cho CS, Chae HJ, Kim CU, Jeong SY, J. Nanosci. Nanotechno., in press., 10 (2010)
  9. Abdalla ZEA, Li B, Tufail A, J. Ind. Eng. Chem., 15(6), 780 (2009)
  10. Kocal JA, Brandvold TA, US Patent No. 6,368,495 (2002)
  11. You N, Kim MJ, Jeong KE, Jeong SY, Park YK, Jeon JK, J. Nanosci. Nanotech., 10, 3663 (2010)
  12. Park YK, Kim SY, Kim HJ, Jung KY, Jeong KE, Jeong SY, Jeon JK, Korean J. Chem. Eng., 27(2), 459 (2010)
  13. Oviedo A, Torres-Nieto J, Arevalo A, Garcia JJ, J. Mol. Catal. A-Chem., 293(1-2), 65 (2008)
  14. Hattori H, Chem. Rev., 95(3), 537 (1995)
  15. Hur JM, Park KI, Lee HI, J. Korean Ind. Eng. Chem., 11(6), 553 (2000)
  16. Suzukamo G, Fukao M, Hibi T, Tanaka K, Monobe M, Stud. Surf. Sci. Catal., 108, 649 (1997)
  17. Kabashima H, Tsuji H, Nakata S, Tanaka Y, Hattori H, Appl. Catal. A:Gen., 194, 227 (2000)
  18. Baba T, Kizuka H, Handa H, Ono Y, Appl. Catal. A: Gen., 194, 203 (2000)
  19. Wan T, Yu P, Gong S, Li Q, Luo Y, Korean J. Chem. Eng., 25(5), 998 (2008)
  20. Fan YP, Wang QY, Yang XG, Yao J, Wang GY, Chin. J. Chem. Eng., 17(5), 883 (2009)