화학공학소재연구정보센터
Clean Technology, Vol.16, No.1, 39-45, March, 2010
PVDF 중공사막을 이용한 막생물반응기의 초기 운전조건 설정 및 여과수 재활용
Initial Operating Condition of Membrane Bioreactor with PVDF Hollow Fiber and Permeate Reuse
E-mail:
초록
본 연구에서는 국내 우리텍사의 PVDF계 중공사 막을 4 bundle 씩 묶어 모듈을 제작하였으며, 처리용량 은 10 ton/day로 설정하여 반응조 내 부유고형물(suspended solid; SS) 의 농도구배가 없도록 하부로부터 간헐 폭기하는 방식을 선택하여 부산 수영하수처리장에 pilot plant를 설치하였다. Pilot plant는 정상 운전을 위하여 하수처리장의 폭기조로부터 유입된 mixed liquor suspended solid (MLSS) 1,000 ppm 정도의 원수를 시험 여과하고, 세척수로 2회 세척, 10% 에탄올 용액으로 1회 세척, 그리고 NaOCl 5% 용액으로 1회 세척 과정을 거치고 마지막으로 세척수로 최종 세척한 후 운전하였다. 결과적으로, 화학세정 후 membrane bioreactor (MBR) 내의 잔류수를 원수로 운전한 결과 SS 제거효율이 99.9% 이상을 보이고 있는 결과와 폭기조 유입수를 원수로 운전하여, 여과 수량은 초기 조건에 비해 16% 감소, suction pressure 는 30% 상승하고 있음을 확인한 결과를 연속 운전 조건으로 설정하였다. 연속 운전한 결과, 유입수 mixed liquor suspended solid (MLSS)가 1,900 mg/L의 조건에서 SS 제거 효율은 99.99% 이었으며 여과수량은 42~52 L/m2 · h, suction pressure가 16~20 cmHg로 안정 상태로 운전되고 있음을 확인하였다. 다만, 여과수 저장조의 유출구와 유입구에서의 SS 제거 효율에 영향을 미치는 조류의 발생 억제에 관한 방법이 재고되어 여과수의 재이용 범위를 설정할 필요가 있을 것으로 판단된다.
In this paper, 4 bundle modules of PVDF hollow fiber membrane from Woori Tech company (Korea) were manufactured in a treatment capacity of 10 ton/day. A membrane bioreactor (MBR) pilot plant was installed at Sooyoung Wastewater Treatment Plant in Busan. An alternating aeration process was selected to avoid the concentration profile of suspended solid (SS) in the MBR. For stable operation, raw wastewater with mixed liquor suspended solid (MLSS) of about 1,000 ppm, which was in-flowed from the aeration tank of the wastewater treatment plant, was fed and filtered through the pilot plant. Subsequently the pilot plant were washed three times with washing water: once with ethanol solution, once with a solution of 5% NaOCl, and finally with washing water. After the chemical washing, the remaining water in the MBR was fed into the pilot plant. As a result, the SS removal efficiency was found to be more than 99.9%. The amount of filtrate with the aeration tank influent decreased by 16%, compared with that from the initial conditions, giving rise to 30% increase in the suction pressure. These results were used to set up continuous operation conditions. The results from the continuous operation with influent MLSS of 1,900 mg/L showed that the SS removal efficiency was about 99.99% and that the amount of filtrate and the suction pressure were 42~52 L/m2hr and 16~20 cmHg, respectively, indicating stable operation of the pilot plant. However, for the reuse of wastewater, methods need to be sought to avoid growth of algae which affects the SS removal efficiency at inlet and outlet of the permeate tank.
  1. Kiat WY, Yamamoto K, Ohgaki S, Water Sci. Technol., 26, 1245 (1992)
  2. Yamamoto K, Hiasa M, Mahmood T, Matsuo T, Water Sci. Technol., 21, 43 (1989)
  3. Cote P, Buisson H, Pound C, Arakaki G, Desalination, 113(2-3), 189 (1997)
  4. Ueda T, Hata K, Kikuoka Y, Seino O, Water Res., 31, 489 (1997)
  5. Smith Jr. CV, Gregorio DD, Talsott RM, Proc. of the 24th Annual Purdue Industrial Waste Conference, 241-250 (1969)
  6. Bemberis I, Hubbard PJ, Leonard FB, Proc. of the Winter Meeting American Society of Agricultural Engineers, 171-188 (1971)
  7. Yamoto K, Kazuo M, Win KM, Water Sci. Technol., 163, 1639 (1991)
  8. Shin CH, Seo JM, Bae JS, J. Ind. Eng. Chem., 15(6), 784 (2009)
  9. Shin CH, Johnson R, J. Ind. Eng. Chem., 13(1), 40 (2007)
  10. Kamo J, Hirai T, Kamada K, J. Membrane Sci., 70, 217 (1992)
  11. Barbe AM, Hogan PA, Johnson RA, J. Membr. Sci., 172(1-2), 149 (2000)
  12. Yamamori H, Hoshlde A, Kobayashi M, U.S. Patent No. 5,480,553 (1996)
  13. Nielson D, The Effect of Rapid-backpulsing and Membrane Surface Modification on Membrane Fouling Reduction, Progress Report, Univ. of Colorado, 1999, pp. 1-11.
  14. Shin CH, Technical Report, Busan Environmental Installation Corporation (2008)