화학공학소재연구정보센터
Clean Technology, Vol.16, No.1, 51-58, March, 2010
해조류의 혐기성 발효를 이용한 메탄 생산
Production of Methane from Anaerobic Fermentation of Marine Macro-algae
E-mail:
초록
해조류를 바이오매스로 이용하는 혐기성 발효를 통해 메탄을 생성하는 연구를 수행하였다. 먼저 원소분석을 통한 다시마, 미역, 톳 등 세 종류의 바이오매스의 이론 메탄가스 전환량을 구한 결과, 분석한 세 종류의 해조류는 C 34 ~ 36%, H 5%, O 37 ~ 43%, N 2 ~ 4%, S 0.4 ~ 0.7%, ash 14 ~ 21%를 포함하고 있었으며, 이론적으로 56 ~ 60%의 메탄전환이 가능한 것으로 나타났다. 이는 g VS(고형분) 당 442 ~ 568 mL의 메탄가스를 생산할 수 있는 양이다. 생물학적메탄잠재력 (Biological Methane Potential, BMP) 시험을 통하여 실제 메탄가스를 측정한 결과, 다시마에서 최대 메탄생성수율 (52%)을 보였다. 이어서 회분식으로 메탄가스 생산에 영향을 미치는 여러 가지 인자들 (유기물 농도, pH, 염분, 입자크기, 그리고 시료전처리)에 대한 조사를 통해 최적의 메탄가스 생산조건을 구하였다. 전처리한 다시마 5 g VS/200 mL를 pH 8조건에서 염분 제거 없이 사용했을 때 이론치의 51%(197.1 mL/g VS)를 얻었고, 더욱이 습식멸균기로 해조류를 찐 경우 27% 증가한 268.5 mL/g VS 메탄가스를 생산할 수 있었다. 또한 연속반응기 (7 L 운영부피/10 L 반응기)를 이용하여 65일 간 운전한 결과 하루 최대 약 1.4 L의 메탄가스 (평균 메탄함량 70%)를 생산할 수 있었다.
Methane was produced from the anaerobic digestion of marine macro-algae. Elemental analysis was first performed to estimate the theoretical methane production of three macro-algae (Undaria pinnatifida, Laminaria japonica, Hizikia fusiformis). Three algae were found to contain C 34 ~ 36%, H 5%, O 37 ~ 43%, N 2 ~ 4%, S 0.4 ~ 0.7%, and ash 14~21%, and the theoretical methane content was in the range of 56 ~ 60%, which can produce 442 ~ 568 mL CH4 per g of volatile solid (VS). Using the biological methane potential (BMP) test, we found that L. japonica resulted in the highest yield of methane (52%). Moreover, various operational conditions, such as algae amount, pH, salinity, particle size, and pre-treatment, were investigated in order to find an optimal condition of anaerobic digestion. At pH 8.0, the autoclaved L. japonica (5g VS/200 mL), when used without washing salt, produced 268.5 mL/g VS which is 65% of the theoretical methane productions. Furthermore, using a CSTR (with the working volume of 7 L out of the total volume of 10 L), we have successfully operated the reactor for 65 days and obtained maximum methane production rate of 1.4 L/day with purity of 70%.
  1. Demirbas A, Prog. Energ. Combust. Sci, 33, 1 (2007)
  2. Wackett LP, Curr. Opin. Chem. Biol., 12, 187 (2008)
  3. United Nations. "Sustainable Bioenergy: a Framework for Decision Makers," UN Biofuels Report (2000)
  4. Berlin A, Maximenko V, Gilkes N, Saddler J, Biotechnol. Bioeng., 97(2), 287 (2007)
  5. Chen F, Dixon RA, Nat. Biotechnol., 25, 759 (2007)
  6. Park JI, Woo HC, Lee JH, Korean Chem. Eng. Res., 46(5), 833 (2008)
  7. CHYNOWETH DP, TURICK CE, OWENS JM, JERGER DE, PECK MW, Biomass Bioenerg., 5(1), 95 (1993)
  8. Shanmugam P, Horan NJ, Bioresource Technol., 100 (2009)
  9. Park JI, Woo HC, Lee JH, Biotechnol. Bioproc. Eng., 14, 307 (2009)
  10. Hansson G, Resour. Conserv., 8, 185 (1983)
  11. Habig C, Ryther JH, Resour. Conserv., 8, 271 (1983)