화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.21, No.3, 243-251, June, 2010
연소배가스 중 질소산화물(NOx) 제거를 위한 생물학적 기술
Biological Removal of Nitrogen Oxides from Combustion Flue Gases
E-mail:
초록
연소배가스에 존재하는 질소산화물의 제거를 위해서는 촉매 환원, 흡수, 흡착 등 화학적 기술이 적용되고 있는데, 장기적으로는 환경친화적이고 에너지 소모가 적은 생물학적 공정의 개발 및 이용이 필요하다. 본 논문에서는 연소 배가스에 존재하는 질소산화물을 제거하기 위한 생물학적 공정의 기술동향을 살펴보고 각각의 장단점을 고찰하였다. 질산화와 탈질 기작을 이용하는 박테리아 시스템과 광합성 미세조류를 이용하는 시스템으로 구분하여 기술의 원리와 현재의 기술 수준을 논하였다. 두 경우 모두 처리속도를 높이기 위해서는 불용성의 일산화질소를 일단 적절한 흡수제에 고농도로 포집시킨 후 미생물에 의하여 분해 또는 고정하는 방향이 바람직하며, 배가스 중 CO2와 NOx를 동시에 고정이 가능하고 별도의 탄소원이 요구되지 않는 미세조류의 활용이 기대된다.
Nitrogen oxides (NOx) in combustion flue gas are currently mitigated by chemical processes such as catalytic reduction, absorption and adsorption. However, development of environmentally sustainable biological processes is necessary in the near future. In this paper, the up-to-dated R&D trend of biological methodologies regarding NOx removal was reviewed, and their advantages and disadvantages were discussed. The principles and applications of bacterial system including nitrification and denitrification and photosynthetic microalgae system were compared. In order to enhance biological treatment rate and performance, the insoluble nitric oxide (NO) should be first absorbed using a proper solubilization agent, and then microbial degradation or fixation is to be followed. The use of microalgal system has a good prospect because it can fix CO2 and NOx simultaneously and requires no additional carbon for energy source.
  1. NIER, National Air Pollutants Emission 2007, 11-1480523-000198-10, Ministry of Environment, Korea (2009)
  2. Ramachandran B, Herman RG, Choi S, Stenger HG, Lyman CE, Sale JW, Catal. Today, 55(3), 281 (2000)
  3. Fritz A, Pitchon V, Appl. Cat., B13, 1 (1997)
  4. Bosch H, Janssen F, Catal. Today, 2, 369 (1988)
  5. Kurvits T, Marta T, Environ. Pollut., 102, 187 (1998)
  6. Jin YM, Veiga MC, Kennes C, J. Chem. Technol. Biotechnol., 80(5), 483 (2005)
  7. Bradford M, Grover R, Paul P, Chem. Eng. Prog., 98(3), 42 (2002)
  8. Wendt JOL, Linak WP, Groff PW, Srivastava RK, AIChE J., 47(11), 2603 (2001)
  9. Bradford M, Grover R, Paul P, Chem. Eng. Prog., 98(4), 38 (2002)
  10. Thiemens MH, Mark H, Trogler WC, Science, 251, 932 (1991)
  11. Kroeze C, Sci. Total Environ., 143, 193 (1994)
  12. Shimizu A, Tanaka K, Fujimori M, Chemosphere GCS, 2, 425 (2000)
  13. Sundaresan BB, Harding CI, May FP, Hendrickson ER, Environ. Sci. Technol., 1, 151 (1967)
  14. Guo ZC, Xie YS, Hong IY, Kim JY, Energy Conv. Manag., 42(15-17), 2005 (2001)
  15. Cant NW, Liu IOY, Catal. Today, 63(2-4), 133 (2000)
  16. Wang CB, Yeh TF, Lin HK, J. Hazard. Mater., 92(3), 241 (2002)
  17. Chu H, Chien TW, Twu BW, J. Hazard. Mater., 84(2-3), 241 (2001)
  18. Tzimas E, Mercier A, Cormos CC, Peteves SD, Energy Policy, 35(8), 3991 (2007)
  19. Deshwal BR, Jin DS, Lee SH, Moon SH, Jung JH, Lee HK, J. Hazard. Mat., 150, 649 (2008)
  20. Hishinuma Y, Kaji R, Akimoto H, Katajima F, Mori T, Kamo T, Arikawa Y, Nozawa S, Bul. Chem. Soc. Jap., 52, 2863 (1979)
  21. Zang V, Kotowski M, van Eldik R, Inorg. Chem., 27, 3279 (1988)
  22. Zang V, Kotowski M, van Eldik R, Inorg. Chem., 29, 1705 (1990)
  23. Demmink JF, Vangils IC, Beenackers AA, Ind. Eng. Chem. Res., 36(11), 4914 (1997)
  24. Chou MS, Lin JH, J. Air Waste Manage. Assoc., 50, 502 (2000)
  25. Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA, Nature, 437, 543 (2005)
  26. Francis CA, Beman JM, Kuypers MMM, ISME J., 1, 19 (2007)
  27. Lukow T, Diekmann H, Biotechnol. Lett., 19(11), 1157 (1997)
  28. Yani M, Hirai M, Shoda M, Environ. Technol., 21, 1199 (2000)
  29. Kim NJ, Hirai M, Shoda M, J. Hazard. Mater., 72, 77 (2000)
  30. Okuno K, Hirai M, Sugiyama M, Haruta K, Shoda M, Biotechnol. Lett., 22(1), 77 (2000)
  31. Min KN, Ergas SJ, Harrison JM, Environ. Eng. Sci., 19, 575 (2002)
  32. Kalkowski I, Conrad R, FEMS Microbiol. Lett., 82, 107 (1991)
  33. Shanmugasundram R, Lee CM, Sublette KL, Appl. Biochem. Biotechnol., 39, 727 (1993)
  34. Ye RW, Averill BA, Tiedje JM, Appl. Environ. Microbiol., 60, 1053 (1994)
  35. Zumft WG, Microbiol. Mol. Biol. Rev., 61, 533 (1997)
  36. Woertz JR, Kinney KA, Szaniszlo PJ, J. Air Waste Manage. Assoc., 51, 895 (2001)
  37. Lee KH, Sublette KL, Appl. Biochem. Biotechnol., 24, 441 (1990)
  38. Lee KH, Sublette KL, Appl. Biochem. Biotechnol., 28, 623 (1991)
  39. Dasu BN, Deshmane V, Shanmugasundram R, Lee CM, Sublette KL, Fuel, 72, 1705 (1993)
  40. POTTER WT, CHO J, SUBLETTE KL, Fuel Process. Technol., 40(2-3), 355 (1994)
  41. Potter WT, Le U, Ronda S, Cho JG, Shanmugasundram R, Chirkis A, Sublette KL, Appl. Biochem. Biotechnol., 51, 771 (1995)
  42. Arvidsson P, Nilsson K, Hakanson H, Mattiasson B, Appl. Microbiol. Biotechnol., 49(6), 677 (1998)
  43. Lee BD, Apel WA, Smith WA, Environ. Prog., 20, 157 (2001)
  44. Klasson KT, Davison BH, Appl. Biochem. Biotechnol., 91, 205 (2001)
  45. Flanagan WP, Apel WA, Barnes JM, Lee BD, Fuel, 81, 1953 (2002)
  46. Matsumoto H, Hamasaki A, Sioji N, Ikuta Y, J. Chem. Eng. Jpn., 30(4), 620 (1997)
  47. Lee JH, Lee JS, Shin CS, Park SC, Kim SW, J. Microbiol. Biotechnol., 10, 338 (2000)
  48. Miyamoto K, Nagase H, Hirata K, Photosynthetic Microorganisms in Environmental Biotechnology, ed. Kojima H, Lee YK, 87, Springer-Verlag (2001)
  49. Lee JS, Kim DK, Lee JP, Park SH, Koh JH, Ohh SJ, J. Microbiol. Biotechnol., 11, 772 (2001)
  50. Chisti Y, TIB, 26, 126 (2007)
  51. Hossain S, Salleh A, Boyce AN, Chowdhury P, Naqiuddin M, Am. J. Biochem. Biotechnol., 4, 250 (2008)
  52. Negoro M, Shioji N, Mitamoto K, Miura Y, Appl. Biochem. Biotechnol., 28, 877 (1991)
  53. Yoshihara KI, Nagase H, Eguchi K, Hirata K, Miyamoto K, J. Ferment. Bioeng., 82(4), 351 (1996)
  54. Nagase H, Yoshihara K, Eguchi K, Yokota Y, Matsui R, Hirata K, Miyamoto K, J. Ferment. Bioeng., 83(5), 461 (1997)
  55. Nagase H, Eguchi K, Yoshihara K, Hirata K, Miyamoto K, J. Ferment. Bioeng., 86(4), 421 (1998)
  56. Nagase H, Yoshihara K, Eguchi K, Okamoto Y, Murasaki S, Yamashita R, Hirata K, Miyamoto K, Biochem. Eng. J., 7, 241 (2001)
  57. Doucha J, Straka F, Livansky K, J. Appl. Phycol., 17, 403 (2005)
  58. Jin HF, Santiago D, Park J, Lee K, Biotechnol. Bioprocess Eng., 13, 48 (2008)
  59. Santiago D, Jin HF, Lee K, Process Biochem., doi:10.1016/j.procbio. 2010. 04. 003 (2010)
  60. Hofele J, Vanvelzen D, Langenkamp H, Schaber K, Chem. Eng. Process., 35(4), 295 (1996)
  61. Shi Y, Littlejohn D, Chang SG, Environ. Sci. Technol., 30, 3371 (1996)
  62. Shi Y, Wang H, Chang SG, Environ. Prog., 16, 201 (1997)
  63. Cetinkaya B, Sahlin RK, Abma WR, Dijkman H, Meyer SF, Kampeter SM, Hydrocarb. Proc., 79, 55 (2000)
  64. Kumaraswamy R, Muyzer G, Kuenen JG, van Loosdrecht MCM, Water Sci. Technol., 50, 9 (2004)
  65. van der Maas P, van de Sandt T, Klapwijk B, Lens P, Biotechnol. Prog., 19(4), 1323 (2003)
  66. van der Maas P, Harmsen L, Weelink S, Klapwijk B, Lens P, J. Chem. Technol. Biotechnol., 79(8), 835 (2004)
  67. Kumaraswamy R, van Dongen U, Kuenen JG, Abma W, van Loosdrecht MCM, Muyzer G, Appl. Environ. Microbiol., 71, 3645 (2005)
  68. Jing GH, Li W, Shi Y, Ma BY, Tan TE, J. Zhejiang Univ. Sci., 5, 432 (2004)
  69. van der Maas P, van den Bosch P, Klapwijk B, Lens P, Biotechnol. Bioeng., 90(4), 433 (2005)
  70. van der Maas P, van den Brink P, Utomo S, Klapwijk B, Lens P, Biotechnol. Bioeng., 94, 576 (2006)
  71. Santiago DEO, MS Thesis, Myongji University, Yongin, Korea (2010)
  72. Lockhart HB, Blakeley RV, Environ. Sci. Technol., 9, 1035 (1975)
  73. Metsarinne S, Rantanen P, Aksela R, Tuhkanen T, Chemosphere, 55, 379 (2004)
  74. Lee K, 41th KSIEC Meeting, 1LE-3, Busan, Korea (2010)