Applied Chemistry for Engineering, Vol.21, No.3, 328-332, June, 2010
기공성 Cu-ZnO 복합 구형 산화물의 합성 및 CO 산화반응 특성
Synthesis of Porous Cu-ZnO Composite Sphere and CO Oxidation Property
E-mail:
초록
본 연구에서는 다이에틸렌글리콜 용매 상에서 공침법을 이용하여 기공성 아연 구형 산화물과 구리-아연 복합 산화물을 합성하였다. 합성된 물질들의 물리화학적 특성은 전자현미경, X-선 회절분석, N2 흡착, H2-TPR 방법을 통하여 분석되었고, 다양한 Cu 함량(0, 6.6, 21.3 36.4, 54.6, 77.8 wt%)을 포함한 Cu-ZnO 복합 산화물을 고정층 반응 장치에서 일산화탄소 산화 반응성을 고찰하였다. 합성된 산화물 중에서 Cu 함량이 증가할수록 Cu-ZnO의 비표면적과 미세 기공 부피는 감소하였으며, Cu (36.4 wt%)-ZnO이 가장 좋은 일산화탄소 산화 반응성을 나타내었다.
In this study, porous ZnO sphere and Cu-ZnO composite were synthesized by coprecipitation method in diethylene glycol solvent. The physicochemical properties of as-prepared composite materials were characterized by SEM, XRD, N2-sorption and H2-TPR. A series of porous Cu-ZnO with different Cu contents (0, 6.6, 21.3, 36.4, 54.6, 77.8 wt%) was investigated for CO oxidation activity in a fixed bed reactor system. With increasing Cu content in Cu-ZnO the surface area and micropore volume of Cu-ZnO are decreased and Cu (36.4 wt%)-ZnO shows higher activity for CO oxidation compared to the others.
- Park HJ, Jeon JK, Park SH, Yim JH, Sohn JM, Park YK, J. Korean Ind. Eng. Chem., 20(1), 1 (2009)
- Park SJ, Park YS, J. Korean Ind. Eng. Chem., 19(6), 624 (2008)
- Park SJ, Cho MH, Kim S, Kwon SH, J. Korean Ind. Eng. Chem., 16(6), 737 (2005)
- Ren Y, Ma Z, Qian LP, Dai S, He HY, Bruce PG, Catal. Lett., 131(1-2), 146 (2009)
- Djinovic P, Batista J, Levec J, Pintar A, Appl. Catal. A: Gen., 364(1-2), 156 (2009)
- Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS, Nature, 359, 710 (1992)
- Holland BT, Blanford CF, Do T, Stein A, Chem. Mater., 11, 795 (1999)
- Wang DS, Xie T, Peng Q, Li YD, J. Am. Chem. Soc., 130(12), 4016 (2008)
- Tuysuz H, Comotti M, Schuth F, Chem. Commun., 4022 (2008)
- Soci C, Zhang A, Xiang B, Dayeh SA, Aplin DPR, Park J, Bao XY, Lo YH, Wang D, Nano Lett., 7, 1003 (2007)
- Ra HW, Choi KS, Kim JH, Hahn YB, Im YH, Small, 4, 1105 (2008)
- Lucas B, El Amrani A, Moliton A, Dilhan M, Superlatt. Microstruct., 42, 357 (2007)
- Umar A, Al-Hajry A, Hahn YB, Kim DH, Electrochim. Acta, 54(23), 5358 (2009)
- Pala RGS, Tang W, Sushchikh MM, Park JN, Forman AJ, Wu G, Kleiman-Shwarsctein A, Zhang JP, McFarland EW, Metiu H, J. Catal., 266(1), 50 (2009)
- Kaur R, Singh AV, Sehrawat K, Mehra NC, Mehra RM, J. Non-Crystal. Solids, 352, 2565 (2006)
- Uekawa N, Iahii S, Kojima T, Kakegawa K, Mater. Lett., 61, 1729 (2007)
- Cho S, Jung SH, Lee KH, J. Phys. Chem. C, 112, 12769 (2008)
- Jezequel D, Guenot J, Jouini N, Fievet F, J. Mater. Res., 10, 77 (1995)
- Xu F, Zhang P, Navrotsky A, Yuan ZY, Ren TZ, Halasa M, Su BL, Chem. Mater., 19, 5680 (2007)
- Xiong GW, Luo LT, Li CQ, Yang XM, Energy Fuels, 23, 1342 (2009)
- Kaluza S, Schroter MK, d'Alnoncourt RN, Reinecke T, Muhler M, Adv. Funct. Mater., 18(22), 3670 (2008)
- Sun Q, Natural Gas Conversion Vii, Bao X, Xu Y, 147, 397 Elsevier Science Bv, Amsterdam (2004)
- Shishido T, Yamamoto M, Li DL, Tian Y, Morioka H, Honda M, Sano T, Takehira K, Appl. Catal. A: Gen., 303(1), 62 (2006)
- Wang LC, Liu YM, Chen M, Cao Y, He HY, Wu GS, Dai WL, Fan KN, J. Catal., 246(1), 193 (2007)
- Bao J, Liu Z, Zhang Y, Tsubaki N, Catal. Commun., 9, 913 (2008)
- Chen CS, You JH, Lin JH, Chen CR, Lin KM, Catal. Commun., 9, 1230 (2008)
- Pillai UR, Deevi S, Appl. Catal. B: Environ., 65(1-2), 110 (2006)