화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.21, No.3, 328-332, June, 2010
기공성 Cu-ZnO 복합 구형 산화물의 합성 및 CO 산화반응 특성
Synthesis of Porous Cu-ZnO Composite Sphere and CO Oxidation Property
E-mail:
초록
본 연구에서는 다이에틸렌글리콜 용매 상에서 공침법을 이용하여 기공성 아연 구형 산화물과 구리-아연 복합 산화물을 합성하였다. 합성된 물질들의 물리화학적 특성은 전자현미경, X-선 회절분석, N2 흡착, H2-TPR 방법을 통하여 분석되었고, 다양한 Cu 함량(0, 6.6, 21.3 36.4, 54.6, 77.8 wt%)을 포함한 Cu-ZnO 복합 산화물을 고정층 반응 장치에서 일산화탄소 산화 반응성을 고찰하였다. 합성된 산화물 중에서 Cu 함량이 증가할수록 Cu-ZnO의 비표면적과 미세 기공 부피는 감소하였으며, Cu (36.4 wt%)-ZnO이 가장 좋은 일산화탄소 산화 반응성을 나타내었다.
In this study, porous ZnO sphere and Cu-ZnO composite were synthesized by coprecipitation method in diethylene glycol solvent. The physicochemical properties of as-prepared composite materials were characterized by SEM, XRD, N2-sorption and H2-TPR. A series of porous Cu-ZnO with different Cu contents (0, 6.6, 21.3, 36.4, 54.6, 77.8 wt%) was investigated for CO oxidation activity in a fixed bed reactor system. With increasing Cu content in Cu-ZnO the surface area and micropore volume of Cu-ZnO are decreased and Cu (36.4 wt%)-ZnO shows higher activity for CO oxidation compared to the others.
  1. Park HJ, Jeon JK, Park SH, Yim JH, Sohn JM, Park YK, J. Korean Ind. Eng. Chem., 20(1), 1 (2009)
  2. Park SJ, Park YS, J. Korean Ind. Eng. Chem., 19(6), 624 (2008)
  3. Park SJ, Cho MH, Kim S, Kwon SH, J. Korean Ind. Eng. Chem., 16(6), 737 (2005)
  4. Ren Y, Ma Z, Qian LP, Dai S, He HY, Bruce PG, Catal. Lett., 131(1-2), 146 (2009)
  5. Djinovic P, Batista J, Levec J, Pintar A, Appl. Catal. A: Gen., 364(1-2), 156 (2009)
  6. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS, Nature, 359, 710 (1992)
  7. Holland BT, Blanford CF, Do T, Stein A, Chem. Mater., 11, 795 (1999)
  8. Wang DS, Xie T, Peng Q, Li YD, J. Am. Chem. Soc., 130(12), 4016 (2008)
  9. Tuysuz H, Comotti M, Schuth F, Chem. Commun., 4022 (2008)
  10. Soci C, Zhang A, Xiang B, Dayeh SA, Aplin DPR, Park J, Bao XY, Lo YH, Wang D, Nano Lett., 7, 1003 (2007)
  11. Ra HW, Choi KS, Kim JH, Hahn YB, Im YH, Small, 4, 1105 (2008)
  12. Lucas B, El Amrani A, Moliton A, Dilhan M, Superlatt. Microstruct., 42, 357 (2007)
  13. Umar A, Al-Hajry A, Hahn YB, Kim DH, Electrochim. Acta, 54(23), 5358 (2009)
  14. Pala RGS, Tang W, Sushchikh MM, Park JN, Forman AJ, Wu G, Kleiman-Shwarsctein A, Zhang JP, McFarland EW, Metiu H, J. Catal., 266(1), 50 (2009)
  15. Kaur R, Singh AV, Sehrawat K, Mehra NC, Mehra RM, J. Non-Crystal. Solids, 352, 2565 (2006)
  16. Uekawa N, Iahii S, Kojima T, Kakegawa K, Mater. Lett., 61, 1729 (2007)
  17. Cho S, Jung SH, Lee KH, J. Phys. Chem. C, 112, 12769 (2008)
  18. Jezequel D, Guenot J, Jouini N, Fievet F, J. Mater. Res., 10, 77 (1995)
  19. Xu F, Zhang P, Navrotsky A, Yuan ZY, Ren TZ, Halasa M, Su BL, Chem. Mater., 19, 5680 (2007)
  20. Xiong GW, Luo LT, Li CQ, Yang XM, Energy Fuels, 23, 1342 (2009)
  21. Kaluza S, Schroter MK, d'Alnoncourt RN, Reinecke T, Muhler M, Adv. Funct. Mater., 18(22), 3670 (2008)
  22. Sun Q, Natural Gas Conversion Vii, Bao X, Xu Y, 147, 397 Elsevier Science Bv, Amsterdam (2004)
  23. Shishido T, Yamamoto M, Li DL, Tian Y, Morioka H, Honda M, Sano T, Takehira K, Appl. Catal. A: Gen., 303(1), 62 (2006)
  24. Wang LC, Liu YM, Chen M, Cao Y, He HY, Wu GS, Dai WL, Fan KN, J. Catal., 246(1), 193 (2007)
  25. Bao J, Liu Z, Zhang Y, Tsubaki N, Catal. Commun., 9, 913 (2008)
  26. Chen CS, You JH, Lin JH, Chen CR, Lin KM, Catal. Commun., 9, 1230 (2008)
  27. Pillai UR, Deevi S, Appl. Catal. B: Environ., 65(1-2), 110 (2006)