화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.21, No.3, 337-342, June, 2010
Tetradecyltrimethylammonium bromide 수용액에서 Monochlorophenol 이성질체들의 가용화에 대한 연구
Solubilization of Monochlorophenol Isomers by the Aqueous Solution of Tetradecyltrimethylammonium bromide
E-mail:
초록
양이온 계면활성제인 TTAB (tetradecyltrimethylammonium bromide)의 수용액에서 monochlorophenol 이성질체들의 가용화현상을 UV/Vis 분광광도법을 이용하여 연구하였다. 온도의 변화에 따른 가용화상수값(Ks)의 변화를 측정함으로써 열역학적 함수값(ΔG°s, ΔH°s 및 ΔS°s)들을 계산하고 분석하였으며, 그 결과 모든 이성질체들의 가용화에 대한 ΔG°s와 ΔH°s 값은 측정한 범위 내에서 음의 값을 그리고 ΔS°s 값은 모두 양의 값을 나타내었다. 또한 monochlorophenol 이성질체들의 가용화현상에 영향을 미치는 n-부탄올과 NaCl의 효과에 대하여 조사하였다. 이러한 첨가제는 Ks와 CMC 값을 동시에 큰 폭으로 변하게 하였으며, 이러한 변화로부터 각 이성질체들이 미셀 내에서 가용화되는 위치를 예측할 수 있었다.
The interaction of monochlorophenol isomers with the micellar system of TTAB (tetradecyltrimethylammonium bromide) was studied by the UV/Vis spectrophotometric method. The solubilization constants (Ks) of monochlorophenol isomers into this micellar system have been measured with the change of temperature. Various thermodynamic parameters (ΔG°s, ΔH°s, and ΔS°s) have been calculated and analyzed from the dependence of Ks values on the temperature. The results show that the values of ΔG°s and ΔH°s are all negative but the values of ΔS°s are all positive for the solubilizations of all isomers within the measured temperature range. The effects of additives (n-butanol and NaCl) on the solubilization of monochlorophenol isomers by the same surfactant system have been also measured. There was a great change on the values of Ks and CMC simultaneously with these additives. From these changes we can postulate the solubilization sites of each isomer in the micellar system of TTAB.
  1. Lee BH, Christian SD, Tucker EE, Scamehorn JF, Langmuir, 7, 1332 (1991)
  2. Lee BH, Christian SD, Tucker EE, Scamehorn JF, J. Phys. Chem., 95, 360 (1991)
  3. Chakraborty T, Chakraborty I, Moulik SP, Ghosh S, Langmuir, 25(5), 3062 (2009)
  4. Chaghi R, de Menorval LC, Charnay C, Derrien G, Zajac J, Langmuir, 25(9), 4868 (2009)
  5. Moroi Y, Mitsunobu K, Morisue T, Kadobayashi Y, Sakai M, J. Phys. Chem., 9, 2372 (1995)
  6. Lu SH, Somasundaran P, Langmuir, 23(20), 9960 (2007)
  7. Takeuchi M, Moroi Y, Langmuir, 11(12), 4719 (1995)
  8. Rao KJ, Paria S, J. Phys. Chem. B, 113(2), 474 (2009)
  9. Mehta SK, Chaudhary S, Kumar R, Bhasin KK, J. Phys. Chem. B, 113(20), 7188 (2009)
  10. Mahata A, Sarkar D, Bose D, Ghosh D, Girigoswami A, Das P, Chattopadhyay N, J. Phys. Chem. B, 113(21), 7517 (2009)
  11. Nakamura S, Kobayashi L, Tanaka R, Isoda-Yamashita T, Motomura K, Moroi Y, Langmuir, 24(1), 15 (2008)
  12. Take'uchi M, Moroi Y, J. Colloid Interface Sci., 197(2), 230 (1998)
  13. Rodrigues MA, Alonso EO, Chang YW, Farah JPS, Quina FH, Langmuir, 15(20), 6770 (1999)
  14. Lee BH, J. Kor. Chem. Soc., 44, 177 (2000)
  15. Lee BH, J. Kor. Chem. Soc., 45, 7 (2001)
  16. Bachofer SJ, Simonis U, Langmuir, 12(7), 1744 (1996)
  17. Sammalkorpi M, Karttunen M, Haataja M, J. Phys. Chem. B, 113(17), 5863 (2009)
  18. Dupont-Leclercq L, Giroux S, Henry B, Rubini P, Langmuir, 23(21), 10463 (2007)
  19. Burrows JC, Flynn DJ, Kutay SM, Leriche TG, Marangoni DG, Langmuir, 11(9), 3388 (1995)
  20. Penfold J, Tucker I, Green A, Grainger D, Jones C, Ford G, Roberts C, Hubbard J, Petkov J, Thomas RK, Grillo I, Langmuir, 24(21), 12209 (2008)
  21. Jusufi A, Hynninen AP, Haataja M, Panagiotopoulos AZ, J. Phys. Chem. B, 113(18), 6314 (2009)