Macromolecular Research, Vol.18, No.4, 336-340, April, 2010
Influence of Crystallinity on Ion Conductivity of PEO-based Solid Electrolytes for Lithium Batteries
E-mail:
In this work, poly(vinyl chloride) (PVC)/poly(ethylene oxide) (PEO) polymer electrolytes for secondary batteries were prepared using a solution casting technique. In addition, their crystallinity, ionic conductivity and mechanical properties were investigated. A binary mixture of carbonate solvent was used as a plasticizer, and lithium perchlorate (LiClO4) was used as a salt. The morphology and mechanical properties of the polymer electrolytes were characterized by scanning electron microscopy (SEM) and a universal tensile machine (UTM). The crystallinity of the polymer electrolytes was evaluated by differential scanning calorimetry (DSC). The ionic conductivity of the polymer electrolytes was measured using the frequency response analyzer (FRA) method. As a result, the mechanical properties of the polymer electrolytes did not show any significant changes up to 5 wt%, despite the phase separation of the composite. The ionic conductivity of polymer electrolytes containing 2 wt% PVC showed the highest ionic conductivity, 2.35×10^(-3) (S/cm) at 25 ℃. This ion conductivity was dependent on the reduced crystallinity by the addition of PVC moieties.
- Belanger A, Gauthier M, Robitaille M, Bellemare R, 2nd International Symposium on Polymer Electrolytes, Scrosati B, Eds., Elsevier, London, 1990.
- Kim DW, J. Power Sources, 87(1-2), 78 (2000)
- Croce F, Appetecchi GB, Persi L, Scrosati B, Nature, 394, 456 (1998)
- Kim SC, Oh TH, Kim DW, Lee CJ, Kang YK, Macromol. Res., 17(3), 141 (2009)
- Dissanayake MAKL, Jayathilaka PARD, Bokalawala RSP, Albinsson I, Mellandar BE, J. Power Sources, 409, 119 (2003)
- Krejza O, Velicka J, Sedlarikova M, Vondrak J, J. Power Sources, 178(2), 774 (2008)
- Kumar B, Scanlon LG, Solid State Ion., 124(3-4), 239 (1999)
- Jeon JD, Kim MJ, Kwak SY, J. Power Sources, 162(2), 1304 (2006)
- Aravindan V, Vickraman P, Krishnaraj K, Curr. Appl. Phys., 9(6), 1474 (2009)
- Shin JH, Alessandrini F, Passerini S, J. Electrochem. Soc., 152(2), A283 (2005)
- Stephan AM, Nahm KS, Polymer, 47(16), 5952 (2006)
- Shukla AK, Kumar TP, Curr. Sci., 94, 314 (2008)
- Kim S, Park SJ, Electrochim. Acta, 54(14), 3775 (2009)
- Stephan AM, Renganathan NG, Gopukumar S, Dale-Teeters, Mater. Chem. Phys., 85(1), 6 (2004)
- Chi ZY, Xu YY, Zhu LP, Wei XZ, Zhang CF, Zhu BK, Mater. Lett., 62, 3809 (2008)
- Saikia D, Kumar A, Electrochim. Acta, 49(16), 2581 (2004)
- Rhoo HJ, Kim HT, Park JK, Hwang TS, Electrochim. Acta, 42(10), 1571 (1997)
- Lee WJ, Kim SH, Macromol. Res., 16(3), 247 (2008)
- Dimarco G, Lanza M, Pieruccini M, Solid State Ion., 89(1-2), 117 (1996)
- Tsutsumi N, Davis GT, Dereggi AS, Macromolecules, 24, 6392 (1991)
- Kim DW, Sun YK, J. Power Sources, 102(1-2), 41 (2001)
- Anand J, Palaniappan S, Srinivasan P, Sathyamarayana DN, Eur. Polym. J., 35, 499 (1999)
- Morita M, Tanaka H, Ishikawa M, Matsuda Y, Solid State Ion., 86-88, 401 (1996)
- Rajendran S, Babu R, Kanimozhi K, Indian J. Physics, 81, 539 (2007)
- Jin FL, Park SJ, J. Ind. Eng. Chem., 14(5), 564 (2008)
- Wu CG, Lu MI, Chuang HJ, Polymer, 46(16), 5929 (2005)
- Choi NS, Park JK, Electrochim. Acta, 46(10-11), 1453 (2001)
- Muniyandi N, Kalaiselvi N, Periyasamy P, Thirunakaran R, Babu BR, Gopukumar S, Premkumar T, Renganathan NG, Raghavan M, J. Power Sources, 96(1), 14 (2001)
- Kim S, Park SJ, Solid State Ion., 178(13-14), 973 (2007)
- Kim S, Park SJ, Electrochim. Acta, 52(11), 3477 (2007)
- Kim S, Hwang EJ, Park SJ, Curr. Appl. Phys., 8(6), 729 (2008)
- Fan LZ, Nan CW, Dang ZM, Electrochim. Acta, 47(21), 3541 (2002)