화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.48, No.3, 391-396, June, 2010
바이오필터시스템을 이용한 암모니아 함유 악취폐가스 처리
Treatment of Malodorous Waste Air Containing Ammonia Using Biofilter System
E-mail:
초록
본 연구에서는 퇴비공장 또는 공공시설에서 발생되는 악취폐가스의 대표적인 제거대상 오염원인 암모니아의 효율적 처리를 위하여, 여러 운전 조건 하에서 동 부피의 폐타이어담체와 compost를 충전하고 반송슬러지를 고정한 바이오필터의 암모니아 제거 특성을 조사하고 바이오필터공정의 적정운전조건을 구축하였다. 암모니아를 함유한 폐가스의 처리를 위하여 바이오필터를 30일(2회/1일의 회수로 총 60회 실험) 동안 약 30 ℃의 온도조건 하에서 암모니아부하를 2.18 g-N/m3/h부터 70 g-N/m3/h 까지 증가시키면서 운전하였다. 바이오필터를 가동하여 I부터 IV 단계까지는 암모니아 제거율이 거의 100%로서, 암모니아부하가 17 g-N/m3/h에 이르기까지 거의 모든 암모니아가 제거되었으나, 바이오필터 운전 V 단계에서 암모니아부하를 약 35 g-N/m3/h로 증가시켰을 때에 암모니아제거율은 약 80% 정도로 급락하여 암모니아 제거용량이 약 28 g-N/m3/h이었다. 그러나 바이오필터 운전 VI 단계에서 암모니아부하를 약 70 g-N/m3/h로 두 배로 증가시켰을 때에도 암모니아제거율은 80%를 유지하여 최대암모니아 제거용량이 약 55 g-N/m3/h에 달하였다. 이와 같이 본 연구의 최대 암모니아 제거용량은, 분뇨슬러지를 유기담체인 rock wool에 접종하고 Kim 등에 의하여 수행된 바이오필터실험의 최대 암모니아 제거용량인 1,200 g-N/m3/day(i.e., 50 g-N/m3/h)보다 다소 우월하였다. 그러나 본 연구의 암모니아 질소 임계부하는 Kim 등에 의하여 수행된 바이오필터실험의 암모니아 질소의 임계부하인 810 g-N/m3/day(i.e., 33.75 g-N/m3/h)에 미치지 못하였다. 본 연구의 최대 암모니아 제거용량이 Kim 등보다 우월한 이유는 Kim 등에 의하여 사용된 미생물담체보다 본 연구에서 사용한 미생물담체인 폐타이어담체의 코코넛 활성탄분말로 도포된 표면 및 발달된 내부공극이 각각 질산화 및 탈질 미생물이 고정화되기 더욱 쉬운 환경을 제공하기 때문이라고 사료된다.
In this research the characteristics of ammonia removal from malodorous waste-air were investigated under various operating condition of biofiilter packed with equal volume of rubber media and compost for the efficient removal of ammonia, representative source of malodor frequently generated at compost manufacturing factory and publicly owned facilities. Then the optimum conditions were constructed to treat waste-air containing ammonia with biofilter. Biofilter was run for 30 days(experimental frequency of 2 times/day makes 60 experimental times.) with the ammonia loading from 2.18 g-N/m3/h to 70 g-N/m3/h at 30 ℃. The ammonia removal efficiency reached almost 100% for I through IV stage of run to degrade up to the ammonia loading of 17 g-N/m3/h. However the removal efficiency dropped to 80% when ammonia loading increased to 35 g-N/m3/h, which makes the elimination capacity of ammonia 28 g-N/m3/h for V stage of run. However, the removal efficiency remained 80% and the maximum elimination capacity reached 55 g-N/m3/h when ammonia loading was doubled 70 g-N/m3/h for VI stage of run. Thus the maximum elimination capacity exceeded 1,200 g-N/m3/day(i.e., 50 g-N/m3/h) of the experiment of biofilter packed with rock wool inoculated with night soil sludge by Kim et al.. However, the critical loading did not exceed 810 g-N/m3/day (i.e., 33.75 g-N/m3/h) of the biofilter experiment by Kim et al.. The reason to exceed the maximum elimination capacity of Kim et al. may be attributed to that the rubber media used as biofilter packing material provide the better environment for the fixation of nitrifying and denitrification bacteria to its surface coated with coconut based-activated carbon powder and well-developed inner-pores, respectively.
  1. Hirai M, Ohtake M, Shoda M, J. Ferment. Bioeng., 70, 334 (1990)
  2. Easter C, Quigley C, Burrowes P, Witherspoon J, Apgar D, Chem. Eng. J., 113(2-3), 93 (2005)
  3. Islander RI, Devinny JS, Mansfield F, Postyn A, Shin H, J. Environ. Eng., 117, 751 (1990)
  4. Oyarzun P, Arancibia F, Canales C, Aroca GE, Process Biochem., 39, 165 (2003)
  5. Cho KS, Ryu HW, Lee NY, J. Biosci. Bioeng., 90(1), 25 (2000)
  6. Wani AH, Branion MR, Lau AK, J. Hazard. Mater., 60, 287 (1998)
  7. Chung YC, Huang CP, Tseng CP, Biotechnol. Prog., 12(6), 773 (1996)
  8. Chung YC, Huang C, Tseng CP, J. Biotechnol., 52, 31 (1996)
  9. Chung YC, Huang C, Tseng CP, Chemosphere, 43, 1043 (2001)
  10. Cox HHJ, Deshusses MA, Chem. Eng. J., 87(1), 101 (2002)
  11. Shareefdeen Z, Herner B, Webb D, Verhaeghe L, Wilson S, Chem. Eng. J., 113(2-3), 215 (2005)
  12. Cox HHJ, Deshusses MA, Biotechnol. Bioeng., 62(2), 216 (1999)
  13. Yang Y, Allen ER, J. Air Waste Manage. Assoc., 44, 863 (1994)
  14. Kuroda K, Osada T, Yonaga M, Kanematu A, Nitta T, Mouri S, Kojima T, Bioresour. Technol., 56(2-3), 265 (1996)
  15. Malhaulter L, Gracian C, Roux JC, Fanlo JL, Cloirec PL, Chemosphere, 50, 145 (2003)
  16. Kim NJ, Hirai M, Shoda M, J. Hazard. Mater., B72, 77 (2000)
  17. Chen YX, Yin J, Wang KX, Chemosphere, 58, 1023 (2005)
  18. Lim KH, Jung YJ, Park LS, Min KS, HWAHAK KONGHAK, 39(5), 600 (2001)