화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.27, No.5, 1412-1418, September, 2010
Carbon nanofibers supported Ru catalyst for sorbitol hydrogenolysis to glycols: Effect of calcination
E-mail:
Carbon nanofiber (CNFs) supported Ru catalysts for sorbitol hydrogenolysis to ethylene glycol and propylene glycol were prepared by incipient wetness impregnation, calcination and reduction. The effect of calcination on catalyst properties was investigated using thermal gravimetry analysis, temperature-programmed reduction, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N2 physisorption. The results indicated that calcination introduced a great amount of surface oxygen-containing groups (SOCGs) onto CNF surface and induced the phase transformation of Ru species, but slightly changed the texture of Ru/CNFs. The catalytic performance in sorbitol hydrogenolysis showed that Ru/CNFs catalyst calcined at 240 ℃ presented the highest glycol selectivities and reasonable glycol yields. It was believed that the inhibition and confinement effect of SOCGs around Ru particles as well as the high dispersion of Ru particles was the key factor for the catalytic activity.
  1. Lee SW, Nam SS, Kim SB, Lee KW, Choi CS, Korean J. Chem. Eng., 17(2), 174 (2000)
  2. Wang ZM, Lee JS, Park JY, Wu CZ, Yuan ZH, Korean J. Chem. Eng., 25(4), 670 (2008)
  3. Wang ZM, Lee JS, Park JY, Wu CZ, Yuan ZH, Korean J. Chem. Eng., 24(6), 1027 (2007)
  4. Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Elliot D, Lasure L, Jones S, Gerber M, Ibsen K, Lumberg L, Kelley S, U.S. Department of Energy Report (2004)
  5. Wang KY, Hawley MC, Furney TD, Ind. Eng. Chem. Res., 34(11), 3766 (1995)
  6. Andrews MA, Klaeren SA, J. Am. Chem. Soc., 111, 4131 (1989)
  7. Zhao L, Zhou JH, Sui ZJ, Zhou XG, Chem. Eng. Sci., 65, 30 (2009)
  8. Somorjai GA, Rioux RM, Catal. Today, 100(3-4), 201 (2005)
  9. Mazzieri V, Coloma-Pascual F, Arcoya A, L'Argentiere P, Figoli NS, Appl. Surf. Sci., 210(3-4), 222 (2003)
  10. Koopman PGJ, Kieboom APG, Van Bekkum H, J. Catal., 69, 172 (1981)
  11. Infantes-Molina A, Merida-Robles J, Rodriguez-Castellon E, Fierro JLG, Jimenez-Lopez A, Appl. Catal. A: Gen., 341(1-2), 35 (2008)
  12. Cerro-Alarcon M, Maroto-Valiente A, Rodriguez-Ramos I, Guerrero-Ruiz A, Carbon., 43, 2711 (2005)
  13. Zhou JH, Sui ZJ, Zhu J, Li P, Chen D, Dai YC, Yuan WK, Carbon., 45, 785 (2007)
  14. Zielke U, Huttinger KJ, Hoffman WP, Carbon., 34, 983 (1996)
  15. Lakshminarayanan PV, Toghiani H, Pittman Jr CU, Carbon., 42, 2433 (2004)
  16. Pan JX, Li JH, Wang C, Yang ZY, React. Kinet. Catal. Lett., 90, 233 (2007)
  17. Bock C, Paquet C, Couillard M, Botton GA, MacDougall BR, J. Am. Chem. Soc., 126(25), 8028 (2004)
  18. Toebes ML, Prinsloo FF, Bitter JH, van Dillen AJ, de Jong KP, J. Catal., 214(1), 78 (2003)
  19. Asedegbega-Nieto E, Bachiller-Baeza B, Kuvshinov DG, Garcia-Garcia FR, Chukanov E, Kuvshinov GG, Guerrero-Ruiz A, Rodriguez-Ramos I, Carbon., 46, 1046 (2008)
  20. Toebes ML, Zhang YH, Hajek J, Nijhuis TA, Bitter JH, van Dillen AJ, Murzin DY, Koningsberger DC, de Jong KP, J. Catal., 226(1), 215 (2004)
  21. Toebes ML, Nijhuis TA, Hajek J, Bitter JH, van Dillen AJ, Murzin DY, de Jong KP, Chem. Eng. Sci., 60(21), 5682 (2005)
  22. Tang TD, Yin CY, Xiao N, Guo MY, Xiao FS, Catal. Lett., 127(3-4), 400 (2009)
  23. Amorim C, Keane MA, J. Chem. Technol. Biotechnol., 83(5), 662 (2008)
  24. Plomp AJ, Vuori H, Krause AOI, de Jong KP, Bitter JH, Appl. Catal. A: Gen., 351(1), 9 (2008)