화학공학소재연구정보센터
Polymer(Korea), Vol.34, No.4, 289-293, July, 2010
주기적인 메조포러스 유기실리카/고분자 복합재료 제조
Preparation of Periodic Mesoporous Organosilica/Polymer Composite
E-mail:
초록
비스트리에톡시시릴에탄(bis(triethoxy silyl) ethane)을 전구체로 도데실 트리메틸암모늄 브로마이드(dodecyl trimethyl ammonium bromide), 세틸 트리메틸암모늄 브로마이드(cetyl trimethyl ammonium bromide), 그리고 옥타데실 트리메틸암모늄 브로마이드(octadecyl trimethyl ammonium bromide)를 구조유도체로 사용하여 주기적인 메조포러스 유기실리카(periodic mesoporous organosilicas)(PMO)를 합성하였다. 합성된 PMO의 경우 구조유도체로서 사용한 계면활성제의 알킬기가 증가할수록 PMO의 표면적과 기공부피가 감소하였으나 기공의 직경에는 영향이 없었다. 그리고 합성된 PMO에 폴리에틸렌을 삽입한 결과 사용한 구조유도체의 알킬기의 크기에 따라서 폴리에틸렌의 삽입과정에 많은 영향이 있었으나, 폴리(에틸렌 옥사이드)의 경우 합성된 PMO의 특성에 영향이 거의 없음을 XRD와 DSC로 확인하였다. 또한, 고분자의 열안정성을 확인한 결과 PMO에 삽입된 고분자의 열분해 온도가 증가함을 알 수 있었다.
Periodic mesoporous organosilicas (PMO) were synthesized using bis(triethoxy silyl) ethane (BTEE) as the precursor and dodecyl trimethyl ammonium bromide(DTMA), cetyl trimethyl ammonium bromide(CTMA), and octadecyl trimethyl ammonium bromide(ODTMA) as the templating agents. The surface area and pore volume of PMO decrease with the increasing of chain length of templating agents. However, the chain length of templating agents almost has no effect on the pore diameter of PMO. From the XRD and the DSC experiments, we found that the chain length of surfactants using as the templating agents has an effect on the melting transition of polyethylene. But it has no effect on the melting transition of poly(ethylene oxide). The results of TGA prove that the thermal decomposition temperature of polymer which was penetrated into PMO was increased.
  1. Mark JE, Lee CYC, Bianconi PA, Editors, Hybrid Organic- Inorganic Composites, American Chemical Society, Washington, Vol 585 (1995)
  2. Krishnamoorti R, Vaia RA, Polymer nanocomposites: synthesis, characterization, and modeling, American Chemical Society, Washington, Vol 804 (2002)
  3. Frisch HL, Mark JE, Chem. Mater., 8, 1735 (1996)
  4. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL, J. Am. Chem. Soc., 114, 10834 (1992)
  5. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS, Nature, 359, 710 (1992)
  6. Hitz S, Prins R, J. Catal., 168(2), 194 (1997)
  7. Hammond W, Prouzet E, Mahanti SD, Pinnavaia TJ, Micropor. Mesopor., 27, 19 (1999)
  8. Zhao XS, Lu GQ, Millar GJ, Ind. Eng. Chem. Res., 35(7), 2075 (1996)
  9. Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O, J. Am. Chem. Soc., 121(41), 9611 (1999)
  10. Melde BJ, Holland BT, Blanford CF, Stein A, Chem. Mater., 11, 3302 (1999)
  11. Asefa T, MacLachlan MJ, Coombs N, Ozin GA, Nature, 402, 867 (1999)
  12. Muth O, Schellbach C, Froba M, Chem. Commun., 2032 (2001)
  13. Morell J, Wolter G, Froba M, Chem. Mater., 17, 804 (2005)
  14. Kim DJ, Lyu SG, Bae KS, Lee TJ, Sur GS, J. Korean Ind. Eng. Chem., 14(8), 1076 (2003)
  15. Jia M, Seifert A, Thiel WR, Chem. Mater., 15, 2174 (2003)
  16. Feng X, Fryxell GE, Wang LQ, Kim AY, Liu J, Kemner KM, Science, 276(5314), 923 (1997)
  17. Liu C, Naismith N, Fu L, Economy J, Chem. Commun., 1920 (2003)
  18. Liu C, Naismith N, Fu L, Economy J, Chem. Commun., 2472 (2003)
  19. Liu CQ, Lambert JB, Fu L, J. Am. Chem. Soc., 125(21), 6452 (2003)
  20. Feng PY, Bu XH, Pine DJ, Langmuir, 16(12), 5304 (2000)
  21. Li D, Sur GS, J. Korean Ind. Eng. Chem., 20, 5 (2009)