화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.21, No.4, 377-384, August, 2010
3-Azidopropane-1,2-diol로 쇄연장된 GAP/PTMG 폴리우레탄의 상거동
Phase Behaviors of the GAP/PTMG Polyurethanes Chain Extended with 3-Azidopropane-1,2-Diol
E-mail:
초록
에너지 함유 쇄연장제인 3-azidopropane-1,2-diol (AzPD)로 쇄연장된 에너지 함유 폴리우레탄의 특성을 고찰하기 위하여 비교연구법을 수행하였다. 이를 위하여 AzPD, 1,4-BD, 또는 1,5-PD 쇄연장제를 갖는 poly(glycidyl azide)/poly(tetramethylene oxide)계 에너지 함유 세그멘티드 폴리우레탄(energetic segmented polyurethane, GAP/PTMG ESPU)을 dimethyl formamide (DMF) 용매에서 합성하여 상거동을 고찰하였다. 상거동은 fourier transform infrared.attenuated total reflection spectroscopy (ATR FT.IR), differential scanning calorimetry (DSC), 및 dynamic mechanical analysis (DMA)를 이용하여 분석하였다. ATR FT.IR spectrum 분석결과 7일 경과 시편의 GAP/PTMG AzESPU의 수소결합하지 않은 C=O 분율이 0.5로 각각 0.44 및 0.41인 GAP/PTMG BDESPU 및 GAP/PTMG PDESPU 보다 높았고, 제조 후 60일 경과 시편의 경우 0.26∼0.29의 범위로 큰 차가 없었다. 제조 후 7일 경과 GAP/PTMG AzESPU 시편의 DMA curves는 무정형 고분자의 거동과 유사하였으며, GAP/PTMG BDESPU과 GAP/PTMG PDESPU는 고무평탄구간과 연성 흐름 구간을 갖는 점탄성 거동을 나타냈다. 그러나, 제조 후 60일 경과 GAP/PTMG AzESPU의 DMA curves는 GAP/PTMG PDESPU와 같이 고무평탄구간과 연성 흐름 구간을 갖는 점탄성 거동을 나타냈다. ATR FT-IR, DSC 및 DMA 분석을 이용한 상거동 고찰로부터 AzPD로 쇄연장된 GAP/PTMG ESPU는 1,4-BD 또는 1,5-PD로 쇄연장된 GAP/PTMG ESPU보다 구성성분간의 상혼합이 잘 이루어지나 적절한 조건에서 상형평에 도달되면 GAP/PTMG PDESPU와 유사한 TPE의 점탄성 거동을 나타냈다.
We perform a comparative study to investigate the properties of the new energetic chain extender (AzPD). A series of poly(glycidyl azide)/poly(tetramethylene oxide)-based energetic segmented polyurethane (GAP/PTMG ESPU) with different chain extender, which is 3-azidopropane-1,2-diol (AzPD), 1,4-butane diol (1,4-BD), or 1,5 pentane diol (1,5-PD), was synthesized by solution polymerization in dimethyl formamide (DMF) and their phase behaviors were investigated. The ESPUs were characterized with Fourier transform infrared-attenuated total reflection spectroscopy (ATR FT-IR), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The results of the ATR FT-IR analysis of the urethane carbonyl group region showed that the ‘free’ C=O fraction was higher in GAP/PTMG AzESPU (0.5) than GAP/PTMG BDESPU (0.44) and GAP/PTMG PDESPU (0.41) for 7 days samples after preparation and that it was similar in the range of 0.26∼0.29 for three 60 days ESPU samples. DMA curves of the GAP/PTMG AzESPU for 7 days samples showed amorphous polymers, but GAP/PTMG BDESPU and GAP/PTMG PDESPU showed viscoelastic behaviors with rubbery plateau and the flow region. However, DMA curves of the GAP/PTMG AzESPU for 60 days samples showed viscoelastic behaviors with rubbery plateau and the flow region like GAP/PTMG PDESPU, but GAP/PTMG BDESPU did not show the flow region. From phase behaviors with ATR FT-IR, DSC and DMA analysis, GAP/PTMG AzESPU showed good phase-mixing between components. However, it represented viscoelastic behavior of TPE similar to GAP/PTMG PDESPM according to phase equilibrium progress with aging time.
  1. Andrea BD, Lillo F, Faure A, Perut C, Acta Astronautica, 47, 2 (2000)
  2. Agrawal JP, Prog. Energy Combust. Sci., 24(1), 1 (1998)
  3. Ou Y, Chen B, Yan H, Jia H, Li J, Dong S, J. of Propulsion and power, 11, 838 (1995)
  4. Nazare AN, Aathana SN, Singh HJ, Energetic Materials, 10, 43 (1992)
  5. Holden G, Legge HR, Quirk R, Schroeder HE, Thermoplastic Elastomers, Hanser/Gardner Publications, Inc., Cincinnati (1996)
  6. Fakirov S, Handbook of Condensation Thermoplastic Elastomers, Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim.
  7. Miller WG, Saunders JH, J. Appl. Polym. Sci., 13, 1277 (1969)
  8. Holden G, Legge HR, Quirk R, Schroeder HE, Thermoplastic Elastomers, 2, Hanser Gargner Publication (1996)
  9. Hepburn C, Polyurethane Elastomers, Elsevier Science, New York (1992)
  10. Ingham JD, Petty WL, Nichols Jr. PL, J. Org. Chem., 21, 373 (1956)
  11. Li Y, Gao T, Liu J, Linliu K, Desper CR, Chu B, Macromolecules, 25, 7365 (1992)
  12. Abouzahr S, Wilkes GL, Journal of Applied Polymer Science, 29, 2695 (1984)
  13. Wilkes CE, Yusek CS, J. Macromolecular Science : Physics., B7, 157 (1973)
  14. Bonart R, Muller EH, J. Macromolecular Science : Physics., B10, 177 (1974)
  15. Hesketh TR, Van Bogart JWC, Cooper SL, Polymer Engineering and Science, 20, 190 (1980)
  16. Vilensky VA, Lipatov YS, Polymer, 35(14), 3069 (1994)
  17. Koberstein JT, Russell TP, Macromolecules, 19, 714 (1986)
  18. Paik Sung CS, Hu CB, Wu CS, Macromolecules, 13, 111 (1980)
  19. Seymour RW, Cooper SL, J. Polym. Sci., Polym. Lett. Ed., 9, 689 (1971)
  20. Coleman MM, Lee KH, Skrovanek DJ, Painter PC, Macromolecules, 19, 2149 (1986)
  21. Brenette CM, Hsu SL, Macknight WJ, Macromolecules, 15, 71 (1982)
  22. Finck B, Graindorge H, New Molecules for high Energetic Materials. In 27th int. annu. ICT Conf. (energetic materials), 23 (1996)
  23. Holden G, Legge HR, Quirk R, Schroeder HE, Thermoplastic Elastomers, 15 (1996)
  24. Li XR, Zhan J, Li YS, Macromolecules, 37(20), 7584 (2004)