Applied Chemistry for Engineering, Vol.21, No.4, 377-384, August, 2010
3-Azidopropane-1,2-diol로 쇄연장된 GAP/PTMG 폴리우레탄의 상거동
Phase Behaviors of the GAP/PTMG Polyurethanes Chain Extended with 3-Azidopropane-1,2-Diol
E-mail:
초록
에너지 함유 쇄연장제인 3-azidopropane-1,2-diol (AzPD)로 쇄연장된 에너지 함유 폴리우레탄의 특성을 고찰하기 위하여 비교연구법을 수행하였다. 이를 위하여 AzPD, 1,4-BD, 또는 1,5-PD 쇄연장제를 갖는 poly(glycidyl azide)/poly(tetramethylene oxide)계 에너지 함유 세그멘티드 폴리우레탄(energetic segmented polyurethane, GAP/PTMG ESPU)을 dimethyl formamide (DMF) 용매에서 합성하여 상거동을 고찰하였다. 상거동은 fourier transform infrared.attenuated total reflection spectroscopy (ATR FT.IR), differential scanning calorimetry (DSC), 및 dynamic mechanical analysis (DMA)를 이용하여 분석하였다. ATR FT.IR spectrum 분석결과 7일 경과 시편의 GAP/PTMG AzESPU의 수소결합하지 않은 C=O 분율이 0.5로 각각 0.44 및 0.41인 GAP/PTMG BDESPU 및 GAP/PTMG PDESPU 보다 높았고, 제조 후 60일 경과 시편의 경우 0.26∼0.29의 범위로 큰 차가 없었다. 제조 후 7일 경과 GAP/PTMG AzESPU 시편의 DMA curves는 무정형 고분자의 거동과 유사하였으며, GAP/PTMG BDESPU과 GAP/PTMG PDESPU는 고무평탄구간과 연성 흐름 구간을 갖는 점탄성 거동을 나타냈다. 그러나, 제조 후 60일 경과 GAP/PTMG AzESPU의 DMA curves는 GAP/PTMG PDESPU와 같이 고무평탄구간과 연성 흐름 구간을 갖는 점탄성 거동을 나타냈다. ATR FT-IR, DSC 및 DMA 분석을 이용한 상거동 고찰로부터 AzPD로 쇄연장된 GAP/PTMG ESPU는 1,4-BD 또는 1,5-PD로 쇄연장된 GAP/PTMG ESPU보다 구성성분간의 상혼합이 잘 이루어지나 적절한 조건에서 상형평에 도달되면 GAP/PTMG PDESPU와 유사한 TPE의 점탄성 거동을 나타냈다.
We perform a comparative study to investigate the properties of the new energetic chain extender (AzPD). A series of poly(glycidyl azide)/poly(tetramethylene oxide)-based energetic segmented polyurethane (GAP/PTMG ESPU) with different chain extender, which is 3-azidopropane-1,2-diol (AzPD), 1,4-butane diol (1,4-BD), or 1,5 pentane diol (1,5-PD), was synthesized by solution polymerization in dimethyl formamide (DMF) and their phase behaviors were investigated. The ESPUs were characterized with Fourier transform infrared-attenuated total reflection spectroscopy (ATR FT-IR), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The results of the ATR FT-IR analysis of the urethane carbonyl group region showed that the ‘free’ C=O fraction was higher in GAP/PTMG AzESPU (0.5) than GAP/PTMG BDESPU (0.44) and GAP/PTMG PDESPU (0.41) for 7 days samples after preparation and that it was similar in the range of 0.26∼0.29 for three 60 days ESPU samples. DMA curves of the GAP/PTMG AzESPU for 7 days samples showed amorphous polymers, but GAP/PTMG BDESPU and GAP/PTMG PDESPU showed viscoelastic behaviors with rubbery plateau and the flow region. However,
DMA curves of the GAP/PTMG AzESPU for 60 days samples showed viscoelastic behaviors with rubbery plateau and the flow region like GAP/PTMG PDESPU, but GAP/PTMG BDESPU did not show the flow region. From phase behaviors with ATR FT-IR, DSC and DMA analysis, GAP/PTMG AzESPU showed good phase-mixing between components. However, it represented viscoelastic behavior of TPE similar to GAP/PTMG PDESPM according to phase equilibrium progress with aging time.
- Andrea BD, Lillo F, Faure A, Perut C, Acta Astronautica, 47, 2 (2000)
- Agrawal JP, Prog. Energy Combust. Sci., 24(1), 1 (1998)
- Ou Y, Chen B, Yan H, Jia H, Li J, Dong S, J. of Propulsion and power, 11, 838 (1995)
- Nazare AN, Aathana SN, Singh HJ, Energetic Materials, 10, 43 (1992)
- Holden G, Legge HR, Quirk R, Schroeder HE, Thermoplastic Elastomers, Hanser/Gardner Publications, Inc., Cincinnati (1996)
- Fakirov S, Handbook of Condensation Thermoplastic Elastomers, Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim.
- Miller WG, Saunders JH, J. Appl. Polym. Sci., 13, 1277 (1969)
- Holden G, Legge HR, Quirk R, Schroeder HE, Thermoplastic Elastomers, 2, Hanser Gargner Publication (1996)
- Hepburn C, Polyurethane Elastomers, Elsevier Science, New York (1992)
- Ingham JD, Petty WL, Nichols Jr. PL, J. Org. Chem., 21, 373 (1956)
- Li Y, Gao T, Liu J, Linliu K, Desper CR, Chu B, Macromolecules, 25, 7365 (1992)
- Abouzahr S, Wilkes GL, Journal of Applied Polymer Science, 29, 2695 (1984)
- Wilkes CE, Yusek CS, J. Macromolecular Science : Physics., B7, 157 (1973)
- Bonart R, Muller EH, J. Macromolecular Science : Physics., B10, 177 (1974)
- Hesketh TR, Van Bogart JWC, Cooper SL, Polymer Engineering and Science, 20, 190 (1980)
- Vilensky VA, Lipatov YS, Polymer, 35(14), 3069 (1994)
- Koberstein JT, Russell TP, Macromolecules, 19, 714 (1986)
- Paik Sung CS, Hu CB, Wu CS, Macromolecules, 13, 111 (1980)
- Seymour RW, Cooper SL, J. Polym. Sci., Polym. Lett. Ed., 9, 689 (1971)
- Coleman MM, Lee KH, Skrovanek DJ, Painter PC, Macromolecules, 19, 2149 (1986)
- Brenette CM, Hsu SL, Macknight WJ, Macromolecules, 15, 71 (1982)
- Finck B, Graindorge H, New Molecules for high Energetic Materials. In 27th int. annu. ICT Conf. (energetic materials), 23 (1996)
- Holden G, Legge HR, Quirk R, Schroeder HE, Thermoplastic Elastomers, 15 (1996)
- Li XR, Zhan J, Li YS, Macromolecules, 37(20), 7584 (2004)