화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.16, No.4, 572-576, July, 2010
Rheological behaviors and mechanical properties of graphite nanoplate/carbon nanotube-filled epoxy nanocomposites
E-mail:
In this work, the effect ofmulti-walled carbonnanotube(MWNT) contentsonthe rheological behaviors and mechanical interfacial properties of graphite nanoplate (GP)/epoxy nanocomposites was investigated. The results showed that the co-carbon fillers were homogeneously dispersed in the epoxy resins andMWNTs were intercalated into theGPlayers. The storagemodulus (G') and lossmodulus (G") of thenanocomposites was increased with the addition of MWNTs. This result was accompanied by an increase in elastic properties of the nanocomposites, resulted fromthe higher aspect ratio of theMWNTs. Andthemechanical properties of the nanocomposites were increased, as theMWNT content increased. It was noted that well dispersedMWNTs were strongly interacted with epoxy resins and worked as an effective reinforcement for the nanocomposites due to the flexible MWNTs compared with rigid GPs.
  1. Afanasov IM, Morozov VA, Kepman AV, Ionov SG, Seleznev AN, Tendeloo GV, Avdeev VV, Carbon., 47, 263 (2009)
  2. Kim S, Park SJ, Anal. Chim. Acta., 619, 43 (2008)
  3. Coleman JN, Khan U, Gun'ko YK, Adv. Mater., 18(6), 689 (2006)
  4. Lahiff E, Ryu CY, Curran S, Minett AI, Blau WJ, Ajayan PM, Nano Lett., 3, 1333 (2003)
  5. Verdejo R, Saiz-Arroyo C, Carretero-Gonzalez J, Barroso-Bujans F, Rodriguez-Perez MA, Lopez-Manchado MA, Eur. Polym. J., 44, 2790 (2008)
  6. Chen P, Kim HS, Jin HJ, Macromol. Res., 17(4), 207 (2009)
  7. Celzard A, March JF, Furdin G, Puricelli S, J. Phys. D: Appl. Phys., 33, 3094 (2000)
  8. Park SJ, in: Hsu JP (Ed.), Interfacial Forces and Fields: Theory and Applications, Marcel Dekker, New York, (chapter 9). (1999)
  9. Chen GH, Lu JG, Wu DJ, Mater. Chem. Phys., 104(2-3), 240 (2007)
  10. Du XS, Xiao M, Meng YZ, Hay AS, Carbon., 43, 195 (2005)
  11. Han Y, Lu Y, Carbon., 45, 2394 (2007)
  12. Mo ZL, Sun YX, Chen H, Zhang P, Zuo DD, Liu YZ, Li HJ, Polymer, 46(26), 12670 (2005)
  13. Chen GH, Weng WG, Wu DJ, Wu CL, Eur. Polym. J., 39, 2329 (2003)
  14. Uhl Fawn M, Yau Q, Nakajima H, Manias E, Wilkie CA, Polym. Degrad. Stabil., 89, 70 (2005)
  15. Kalaitzidou K, Fukushima H, Drzal LT, Compos. Sci. Technol., 67, 2045 (2007)
  16. Lu W, Lin HF, Wu DJ, Chen GH, Polymer, 47(12), 4440 (2006)
  17. Cai DY, Song M, Xu CX, Adv. Mater., 20(9), 1706 (2008)
  18. Yu AP, Ramesh P, Sun XB, Bekyarova E, Itkis ME, Haddon RC, Adv. Mater., 20(24), 4740 (2008)
  19. Li J, Wong PS, Kim JK, Mater. Sci. Eng. A., 483, 660 (2008)
  20. Duquesne S, Bras ML, Bourbigot S, Delobel R, Camino G, Eling B, Lindsay C, Roels T, Polym. Degrad. Stabil., 74, 493 (2001)
  21. Du XS, Xiao M, Meng YZ, Hay AS, Polymer, 45(19), 6713 (2004)
  22. Kim BS, Suh KD, Kim B, Macromol. Res., 16(1), 76 (2008)
  23. Franchini E, Galy J, Gerard JF, J. Colloid Interface Sci., 329(1), 38 (2009)
  24. Hyun YH, Lim ST, Choi HJ, Jhon MS, Macromolecules, 34(23), 8084 (2001)
  25. Zhang K, Lim JY, Choi HJ, Diam. Relat. Mater., 18, 316 (2009)
  26. Park SJ, Kim HC, J. Polym. Sci. B: Polym. Phys., 39(1), 121 (2001)
  27. Smith RP, Li D, Francis DW, Chappuis J, Neumann AW, J. Colloid Interface Sci., 157, 478 (1993)
  28. Thongruang W, Spontak RJ, Balik CM, Polymer, 43(8), 2279 (2002)
  29. Seo MK, Lee JR, Park SJ, Mater. Sci. Eng. A., 404, 79 (2005)