Polymer Engineering and Science, Vol.49, No.12, 2475-2481, 2009
Polymeric Nanofibers via Flat Spinneret Electrospinning
Electrospun nanofibers; are most often produced by needle electrospinning process, which has inherent disadvantages like clogging and low efficiency. In this study, an alternative needleless electrospinning process is reported for the fabrication of nanofibers based on a novel spinneret. Firstly, a spinneret with a 0.5-mm diameter hole in the middle of a flat plastic cap was custom-made that may be readily scaled up for mass production. Then, polyethylene oxide (PEO) aqueous solution with 6.0 wt% concentration was used to demonstrate the needleless electrospinning process. The processing window for the jet formation in the flat spinneret electrospinning process was determined. The relationships between various processing parameters (applied voltage, working distance, and flow rate) and the resultant PEO nanofibers; were also investigated. It was found that stable fluid jet launched from the tip of the coned droplet anchored at the rim of the hole and formed fibers. The morphology and diameter of electrospun fibers were examined using scanning electron microscopy. The results show that PEO nanofibers produced by this needleless electrospinning have similar structure and morphology to those from the single needle source. Finally, the hole number of spinneret was increased to four holes, which was still able to produce smooth nanofibers with a higher production rate. POLYM. ENG. SCL, 49:2475-2481, 2009. (C) 2009 Society of Plastics Engineers