화학공학소재연구정보센터
Rheologica Acta, Vol.49, No.1, 95-103, 2010
Comparison of viscous and elastic properties of polyolefin melts in shear and elongation
Viscous and elastic properties of a linear polypropylene (PP) and a long-chain branched low-density polyethylene (LDPE) have been investigated by creep and creep-recovery experiments in shear and elongation. The data obtained verify the ratios between the linear values of the viscosities and the steady-state elastic compliances in shear and elongation predicted by the theory of linear viscoelasticity. In the nonlinear range, no simple correlation between the viscous behaviour in shear and elongation exists. The elongational viscosity of the PP decreases with increasing stress analogously to the shear thinning observed; the linear range extends to higher stresses in elongation than in shear, however. The LDPE shows thinning in shear and strain hardening in elongational flow. For the LDPE, a linear steady-state elastic tensile compliance corresponding to one third of the linear steady-state elastic compliance in shear was determined. For the PP, this theoretically predicted value is approximately reached. Analogous to the viscous behaviour, the linear range extends to higher stresses in elongation than in shear. For both materials, the steady-state elastic compliances in the nonlinear range decrease with increasing stress in shear as well as in elongation. However, the decrease in elongation is more pronounced.