화학공학소재연구정보센터
Separation Science and Technology, Vol.43, No.8, 2048-2071, 2008
Diesel oil removal by froth flotation under low interfacial tension conditions II: Continuous mode of operation
The objective of this study was to investigate the relationship between interfacial tension (IFT) and foam characteristics and the efficiency of diesel oil removal from water in a continuous froth flotation column. The effects of operational parameters, including surfactant concentration, salinity, oil-to-water ratio, foam height, air flow rate, and hydraulic retention time (HRT) on the oil removal were investigated in the continuous mode of a froth flotation operation and compared to batch operation results. Unlike the batch system, for the continuous system used in the present study, having only branched alcohol propoxylate sulfate sodium salt surfactant (C14-15(PO)(5)SO4Na) and NaCl present in. the solution yielded such poor foam characteristics that a stable froth which overflowed the flotation column could not be produced, so the addition of sodium dodecyl sulfate (SDS) as a froth promoter was used to improve the foam stability. Unlike the batch froth flotation system with only C14-15(PO)(5)SO4Na, the continuous froth flotation with the mixture Of C14-15(PO)(5)SO4Na and SDS, it was not possible to find a SDS and a NaCl concentration at which both ultralow IFT and good foaming were both achieved. Foam formation, stability, and production rate were found to be crucial parameters to the froth flotation efficiency. The continuous froth flotation system offers a high diesel oil removal of 96% in the single stage unit. Demonstration of efficient operation in the continuous mode in this work is important to the practical application of froth flotation in large scale processing.