화학공학소재연구정보센터
Solid-State Electronics, Vol.52, No.9, 1364-1373, 2008
Joining microelectronics and microionics: Nerve cells and brain tissue on semiconductor chips
The direct electrical interfacing of semiconductor chips with individual nerve cells and with brain tissue is considered. At first, the structure of the cell-chip contact is described and then the electrical coupling is characterized between ion channels, the electrical elements of nerve cells, and transistors and capacitors of silicon chips. On that basis, the signal transmission between microelectronics and microionics is implemented in both directions. Simple hybrid systems are assembled with neuron pairs and with small neuronal networks. Finally, the interfacing with capacitors and transistors is extended to brain tissue on silicon. The application of CMOS chips with capacitively coupled recording sites allows an imaging of neuronal activity with high spatiotemporal resolution. Goal of the work is an integration of neuronal network dynamics and digital electronics on a microscopic level for applications in brain research, medical prosthetics and information technology. (C) 2008 Elsevier Ltd. All rights reserved.