화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.48, No.4, 470-474, August, 2010
PEG 마이크로 섬유 제조를 위한 마이크로플루이딕 제조방법
In situ Microfluidic Method for the Generation of Uniform PEG Microfiber
E-mail:
초록
본 연구는 간편한 마이크로플루이딕 칩을 이용하여 매우 균일한 PEG 마이크로섬유 제작방법을 소개한다. 두 섞이지 않는 상의 주입을 통하여, 연속상의 덮개유동(sheath flow)이 분산상의 안정된 늘어지는 유동(Elongated flow)을 형성하고 채널 내부에 자외선 조사를 통해 고분자 마이크로섬유가 형성되도록 한다. 안정된 마이크로 유동형성의 최적화를 위해 각 사용되는 분산상 유체의 부피유속과 케필러리 수의 상관관계를 이용하여 조사하고 이를 이용하여 최적조건을 확립하였다. 안정된 유동영역에서 형성된 마이크로섬유는 매우 균일하며 재현성이 우수하다. 중요하게는 부피제어를 통해 마이크로섬유의 두께 제어가 가능하며 이를 이용하여 원하는 두께를 손쉽게 얻을 수 있다. 또한, 이와 같은 시스템을 통해 얻어진 마이크로섬유에 물리적으로 생체물질을 고정화하여 바이오센서 및 조직공학에서 적용 가능한 도구로 사용될 수 있음을 보여준다.
In this study, we presents a simple microfluidic approach for generating uniform Poly(ethylene glycol) (PEG) microfiber. Elongated flow pattern of monomer induced by sheath flow of immiscible oil as continuous phase is generated in Y-shape junction and in situ polymerization by UV exposure. For uniform microfiber, we investigate the optimized flow condition and draw phase diagram as function of Ca and Qd. At the region for stable elongated flow pattern, the microfiber generated in microfluidic chip is very uniform and highly reproducible. Importantly, the thickness of microfibers can be easily controlled by flow rate of continuous and disperse phase. We also demonstrate the feasibility for biological application as encapsulating FITC-BSA in PEG microfiber.
  1. Teo W, Ramakrishna S, Compos. Sci. Technol., 69, 1804 (2009)
  2. Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT, Biomaterials, 26, 1523 (2005)
  3. Shin HJ, Lee CH, Cho IH, Kim YJ, Lee YJ, Kim IA, Park KD, Yui N, Shin JW, J. Biomater. Sci. Polym. Ed., 17, 103 (2006)
  4. Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M, J. Controlled Release, 89, 341 (2003)
  5. Chae SK, Park H, Yoon J, Lee CH, Ahn DJ, Kim JM, Adv. Mater., 19(4), 521 (2007)
  6. Dror Y, Kuhn J, Avrahami R, Zussman E, Macromolecule, 41, 4187 (2007)
  7. Yuan XY, Mak AFT, Kwok KW, Yung BKO, Yao KD, J. Appl. Polym. Sci., 81(1), 251 (2001)
  8. Ha SW, Tonelli AE, Hudson SM, Biomacromolecules, 6(3), 1722 (2005)
  9. Sang YM, Gu QB, Sun TC, Li FS, Liang CZ, J. Hazard. Mater., 153(1-2), 860 (2008)
  10. Wang Y, Cheng R, Liang L, Wang Y, Compos. Sci. Technol., 65, 793 (2005)
  11. Doshi J, Reneker DH, J. Electrost., 35, 151 (1995)
  12. Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA, Science, 308, 537 (2005)
  13. Jeong WJ, Kim JY, Kim SJ, Lee SH, Mensing G, Beebe DJ, Lab Chip, 4, 576 (2004)
  14. Choi CH, Jung JH, Hwang TS, Lee CS, Macromol. Res., 17(3), 163 (2009)
  15. Choi CH, Jung JH, Kim DW, Chung YM, Lee CS, Lab Chip, 8, 1544 (2008)
  16. Schindler M, Ajdari A, Phys. Rev. Lett., 100, 04450 (2008)
  17. Nisisako T, Torii T, Adv. Mater., 19(11), 1489 (2007)
  18. Nie ZH, Xu SQ, Seo M, Lewis PC, Kumacheva E, J. Am. Chem. Soc., 127(22), 8058 (2005)
  19. Choi CH, Jung JH, Rhee YW, Kim DP, Shim SE, Lee CS, Biomed. Microdevices, 9, 855 (2007)
  20. Mellott MB, Searcy K, Pishko MV, Biomaterials, 22, 929 (2001)