화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.48, No.4, 534-539, August, 2010
구리로 이온교환된 NaY 제올라이트에 의한 유기 황 화합물들의 흡착제거 비교연구
Comparative Study on Adsorptive Removal of Organic Sulfur Compounds over Cu-Exchanged NaY Zeolites
E-mail:
초록
메탄 속에 포함되어 있는 TBM, THT, DMS 등의 유기 황 화합물에 대한 흡착 제거가 NaY와 CuNaY 제올라이트를 이용하여 303 K, 대기압 조건하에서 수행되었다. 삼성분계 흡착시스템 실험을 통해, NaY에서는 THT의 선택적 흡착이 목격되었으며, CuNaY에서는 모든 유기 황 화합물의 동시 흡착이 일어났다. 이러한 현상은 파과흡착곡선, 승온탈착, 겉보기 탈착 활성화 에너지 등의 실험결과로 부터 설명될 수 있었다. 황에 대한 흡착능은 CuNaY(2.90~3.20 mmol/g)가 NaY(0.70~0.90 mmol/g)보다 매우 우수하였다. 본 연구결과는 CuNaY에 존재하는 Cu^(1+) 흡착점과 강한 산의 세기가 황 원자와의 강한 상호작용을 유발하여 높은 황 흡착능을 갖게 하는 것으로 이해된다.
The adsorptive removal of organic sulfur compounds including tert-butylmercaptane(TBM), tetrahydrothiophene(THT) and dimethylsulfide(DMS) in methane was investigated over NaY and copper-exchanged NaY (CuNaY) zeolites at 303 K and atmospheric pressure. In the ternary adsorption system, the preferential adsorption of THT over other sulfur compounds on NaY and the concurrent adsorption of all sulfur compounds on CuNaY were achieved, which could be explained by the breakthrough curve, the temperature-programmed desorption, and the apparent activation energy for desorption. The sulfur uptake capacity of CuNaY(2.90~3.20 mmol/g) was much higher than that of NaY(0.70~0.90 mmol/g). A comparative study indicated that the Cu^(1+) sites and acidity of CuNaY were probably responsible for the strong interaction with sulfur atom and high sulfur uptake abilities.
  1. Haile SM, Acta Materialia, 51, 5981 (2003)
  2. Rojey A, Thoma M, Jullian S, US Patent 5,803,953 (1998)
  3. Bonville Jr. LJ, Degeorge CL, Foley PF, Garow J, Lesieur RR, Preston JL, Szydlowski DF, US Patent 6,159,256 (2000)
  4. Ma XL, Sun L, Song CS, Catal. Today, 77(1-2), 107 (2002)
  5. Wakita H, Tachiband Y, Hosalca M, Micropor. Mesopor. Mat., 46, 237 (2001)
  6. Song HI, Ko CH, Kim JC, Kim JN, Korean Chem. Eng. Res., 45(2), 143 (2007)
  7. Kim YH, Woo HC, Lee D, Lee HC, Park ED, Korean J. Chem. Eng., 26(5), 1291 (2009)
  8. Park JG, Ko CH, Bhabdari VM, Lee YT, Kim JN, Korean J. Chem. Eng., 43, 588 (2005)
  9. Satokawa S, Kobayashi Y, Fujiki H, Appl. Catal. B: Environ., 56(1-2), 51 (2005)
  10. Wakita H, Tachibana Y, Hosaka M, Micropor. Mesopor. Mat., 46, 237 (2001)
  11. Lee D, Ko EY, Lee HC, Kim S, Park ED, Appl. Catal. A: Gen., 334(1-2), 129 (2008)
  12. Kim HS, Chung JK, Lee SH, Cheon JK, Moon MJ, Woo HC, Clean Technol., 13(1), 64 (2007)
  13. Jung GS, Lee SH, Cheon JK, Choe JW, Woo HC, Clean Technol., 15(1), 60 (2009)
  14. Cvetanovic RJ, Amenomiya Y, Adv. Catal., 17, 103 (1967)
  15. Lee DH, Kim JS, Lee HC, Lee KH, Park ED, Woo HC, J. Phys. Chem. C., 112, 18955 (2008)
  16. Takahashi A, Yang RT, Munson CL, Chinn D, Langmuir, 17(26), 8405 (2001)