화학공학소재연구정보센터
Polymer(Korea), Vol.34, No.5, 442-449, September, 2010
창상치료용 폴리우레탄 폼의 제조 및 특성연구
Fabrication and Characterization of Polyurethane Foam for Wound Dressing
E-mail:
초록
본 연구에서는 hard segment 함량(%)별로 친수성의 폴리우레탄 프리폴리머를 합성한 후 다양한 발포 혼합 조성액을 이용하여 폴리우레탄 폼을 제조하였다. 그 결과 사슬연장제를 도입한 폴리우레탄 프리폴리머가 도입하지 않은 것에 비해 기계적 물성이 우수하였다. 또한 폴리우레탄 구조에 hard segment 함량(%)을 높임으로써 폴리우레탄의 기계적 물성을 향상시킬 수 있었다. 한편 발포 혼합조성액에서도 F-68, 글리세린, CMC 등의 원료 배합비를 조정함으로써 최종적으로 제조된 폴리우레탄 폼의 기계적 물성과 흡수도, 흡수속도, 모폴로지 등을 조절할 수 있었다. 제조된 폴리우레탄 폼은 세포배양 결과 세포적합성이 우수하였고, 동물실험 결과 대조군인 거즈에 비하여 월등한 창상치유 효과를 보였으므로 창상치료용 소재로서의 적용 가능성이 높음을 알 수 있었다.
Polyurethane(PU) prepolymer was synthesized from ethylene oxide/propylene oxide(EO/PO) random polyether polyol, toluene diisocyanate and chain extender such as ethylene glycol and 1,4-butanediol. PU foams having various compositions were fabricated from PU prepolymers with different hard segment contents(%) and mixed foaming solution of different compositions. PU foam from chain extender-introduced PU prepolymer and mixed foaming solution containing glycerin showed better mechanical property than other groups. Various PU foams were tested on their mechanical property, moisture vapor transmission rate, absorption speed, absorptivity, morphology and cell culture test. According to the test, the PU foam fabricated from chain extender-introduced PU prepolymer and mixed foaming solution containing optimum composition of F-68, glycerin and CMC was found to have the best property for wound dressing materials. From in vivo animal study, it was confirmed that above PU foam showed rapid wound recovery.
  1. Korean Research Group for Wound Care, Advance in Wound Care, Korea Medical Book Publisher, Seoul, p 12 (2002)
  2. Winter GD, Nature, 193, 293 (1962)
  3. Kifune K, Medical Application of Chitin and Chitosan, Yangseogak, Seoul, p 17 (2001)
  4. Dumitrui S, ed., Polymeric Biomaterials, Marcel Dekker, New York (1994)
  5. Lelah MD, Copper SL, Polyurethane in Medicines, CRC Press, Boca Raton, Florida (1986)
  6. Kim YH, Park KD, Han DK, “Blood compatible polymers”, The Polymeric Materials Encyclopedia, Salamone et al., Editors, CRC Press, Boca Raton, Florida, p 825 (1996)
  7. Dounis DV, Wilkes GL, Polymer, 38(11), 2819 (1997)
  8. Stashak TS, DVM, MS, Diplomate ACVS, Ellis Farstvedt, DVM, and Ashlee Othic, Update on wound dressing: Indication and best use, Elsevier, p 148 (2004)
  9. Oertel G, Polyurethane Handbook, 2nd Eds., Hanser Publishers, New York (1993)
  10. Kim HJ, Polyurethane Resin, Daekoang Publishers, Seoul, p 77 (1979)
  11. Ashida K, Polyurethane and Related Foams: Chemistry and Technology, Taylor & Francis, Boca Raton, p 65 (2006)
  12. Song KC, Lee SM, Lee DH, Polym.(Korea), 25(5), 679 (2001)
  13. Koh SH, Kim SB, Appl. Chem., 7(1), 29 (2003)
  14. Baek WS, Lee KY, Polym.(Korea), 25(4), 528 (2001)
  15. Havens PL, Rase HF, Ind. Eng. Chem. Res., 32, 2254 (1993)
  16. Kim YJ, Lee SW, Hong SH, Lee HK, Kim EK, The Korean Soc. for Aesthetic Plast. Surg., 5, 1170 (1999)
  17. Jeong HM, Ahn BK, Cho SM, Kim BK, J. Polym. Sci. Part B: Polym. Phys., 45, 3009 (2000)
  18. Jeong HM, Ahn BK, Kim BK, Polym. Intl., 49, 1714 (2000)
  19. Lee JC, Kim JH, Kim BK, Polym. Sci. Tech., 12, 731 (2001)
  20. Queen D, Gaylor JDS, Evans JH, Courtney JM, Reid WH, Biomaterials, 8, 367 (1987)
  21. Khang G, Lee JH, Lee HB, Polym. Sci. Technol., 8(2), 175 (1997)
  22. Park DH. Jung JM, Lee SJ, Song CH, Biomaterials Res., 10, 17 (2006)