화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.27, No.6, 1725-1729, November, 2010
Optimization of medium components for D-ribose production by transketolase-deficient Bacillus subtilis NJT-1507
E-mail:
Statistical experimental designs were used to optimize the composition of culture media for the production of D-ribose by Bacillus subtilis. A fractional factorial design 2(5-2) was used to determine medium components that significantly affected D-ribose production. The concentrations of glucose and (NH4)2SO4 were the significant factors. Central composite design and response surface methodology were then used to estimate the quadratic response surface and determine the factor levels for maximum production of D-ribose. Finally, the optimal medium composition was obtained (g/L): glucose, 172.75; (NH4) 2SO4, 13.2; yeast powder, 4; corn steep liquor, 8 and MnSO4, 0.5. This optimization strategy increased D-ribose production from 73.21 g/L to 88.57 g/L, an increase of 22% compared with the original conditions. The D-ribose production yield to glucose concentration was also enhanced from 0.37 g/g to 0.52 g/g. Confirmatory experiments were also performed to demonstrate the accuracy of the model. Under the optimal medium using ammonia to control pH in a 5 L fermenter, the D-ribose yield was increased to 95.28 g/L after 3 days of cultivation at 37 ℃.
  1. Park YC, Choi JH, Bennett GN, Seo JH, J. Biotechnol., 121, 508 (2006)
  2. Sasajima KI, Yoneda M, Vandamme EJ, Elsevier Science Publishers, New York, 167 (1989)
  3. Salerno C, Eufemia PD, Finocchiaro R, Celli M, Spalice A, Iannetti P, Crifoo C, Giardini O, BBA-Mol. Basis. Dis., 1453, 135 (1999)
  4. Dewulf P, Vandamme EJ, Appl. Microbiol. Biotechnol., 48(2), 141 (1997)
  5. Cooper J, Salomon RG, Tetrahedron. Lett., 31, 3813 (1990)
  6. John WH, Joseph O, Steven S, Robert N, Marina S, Craig M, Mette S, Alfredo GS, Elba MH, Int. Immunopharmacol., 14, 555 (1992)
  7. Schneider HJ, Steffen R, Dietrich P, Andreas H, Int. J. Cardiol., 125, 49 (2008)
  8. Zimmer HG, Basic. Res. Cardiol., 87, 303 (1992)
  9. Teitelbaum JC, Johnson C, StCyr JA, J. Alt. Comp. Med., 12, 857 (2006)
  10. Herrick J, Shecterle LM, StCyr JA, Med. Hypoth., 72, 499 (2009)
  11. Wulf P, Vandamme EJ, Adv. Appl. Microbiol., 44, 167 (1997)
  12. Park YC, Kim SG, Kyungmoon P, Kelvin HL,Seo JH, Appl. Microbiol. Biotechnol., 66, 397 (2004)
  13. Cui JD, Korean J. Chem. Eng., 27, 171 (2010)
  14. Zhuang YP, Chen B, Chu J, Zhang SL, Process Biochem., 41, 405 (2006)
  15. Nguyen HH, Jang NJ, Choi SH, Korean J. Chem. Eng., 26(1), 1 (2009)
  16. Xiao ZJ, Liu PH, Qin JY, Xu P, Appl. Microbiol. Biotechnol., 74(1), 61 (2007)
  17. Shih IL, Lin CY, Wu JY, Hsieh C, Korean J. Chem. Eng., 26(6), 1652 (2009)
  18. Tang XJ, He GQ, Chen QH, Zhang XY, Ali MAM, Bioresour. Technol., 93(2), 175 (2004)
  19. Virginia LP, Jonathan AG, Eur. J. Biochem., 134, 105 (1983)
  20. Wulf P, PhD thesis, University of Gent, Belgium (1995)
  21. Wulf P, Soetaert W, Schwengers D, Vandamme EJ, J. Appl. Microbiol., 83, 25 (1997)
  22. Haaland PD, New York, Marcel Dekker Incorporation (1989)
  23. Chen XC, Bai JX, Bioresource. Technol., 100, 919 (2009)
  24. Li Y, Liu Z, Zhao H, Biochem. Eng. J., 34, 82 (2007)