화학공학소재연구정보센터
Advanced Functional Materials, Vol.20, No.8, 1209-1223, 2010
A General Electrochemical Strategy for Synthesizing Charge-Transfer Complex Micro/Nanowires
Universal strategies for synthesizing one-dimensional organic nanomaterials are of fundamental importance in the development of more flexible, cheaper and lighter electronics. Charge-transfer (CT) complexes, the major kind of organic conductors, are in the long-term attractive materials owing to their unique crystal structures and conductive properties. In this article, a general strategy for the synthesis of CT complex micro/nanowires based on the localized nanoelectrochemistry using tiny carbon nanotube (CNT) electrodes is presented. This strategy is successfully demonstrated over 12 typical CT complexes, and a general rule for the preparation of various kinds of CT complex micro/nanowires is summarized. The CT complex micro/nanowires thus synthesized have high aspect ratios and long lengths as compared with traditional macroscopic planar electrodes, originating from the one-dimensional structural feature with fewer or no defects and the ultrasmall surface area of the CNT. This work provides a more versatile material basis for the fundamental and application studies of low-dimensional organic conductor materials.