화학공학소재연구정보센터
Advanced Materials, Vol.22, No.20, 2228-2246, 2010
Stretchable, Large-area Organic Electronics
Stretchability will significantly expand the application scope of electronics, particularly large-area electronics-displays, sensors, and actuators. If arbitrary surfaces and movable parts could be covered with stretchable electronics, which is impossible with conventional electronics, new classes of applications are expected to emerge. A large hurdle is manufacturing electrical wiring with high conductivity, high stretchability, and large-area compatibility. This Review describes stretchable, large-area electronics based on organic field-effect transistors for applications to sensors and displays. First, novel net-shaped organic transistors are employed to realize stretchable, large-area sensor networks that detect distributions of pressure and temperature simultaneously. The whole system is functional even when it is stretched by 25%. In order to further improve stretchability, printable elastic conductors are developed by dispersing single-walled carbon nanotubes (SWNTs) as dopants uniformly in rubbers. Further, we describe integration of printable elastic conductors with organic transistors to construct a rubber-like stretchable active matrix for large-area sensor and display applications. Finally, we will discuss the future prospects of stretchable, large-area electronics with delineating a picture of the next-generation human/machine interfaces from the aspect of materials science and electronic engineering.