AIChE Journal, Vol.56, No.1, 36-53, 2010
Bubble Size Distribution Modeling in Stirred Gas-Liquid Reactors with QMOM Augmented by a New Correction Algorithm
Local gas hold-up and bubbles size distributions have been modeled and validated against experimental data in a stirred gas-liquid reactor, considering two different spargers. An Eulerian multifluid approach coupled with a population balance model (PBM) has been employed to describe the evolution of the bubble size distribution due to break-up and coalescence. The PBM has been solved by resorting to the quadrature method of moments, implemented through user defined functions in the commercial computational fluid dynamics code Fluent v. 6.2. To overcome divergence issues caused by moments corruption, due to numerical problems, a correction scheme for the moments has been implemented; simulation results prove that it plays a crucial role for the stability and the accuracy of the overall approach. Very good agreements between experimental data and simulations predictions are obtained, for a unique set of break-up and coalescence kinetic constants, in a wide range of operating conditions. (C) 2009 American Institute of Chemical Engineers AIChE J, 56: 36-53, 2010
Keywords:bubble size distribution;multiphase flow;population balance;gas-liquid stirred tank;quadrature method of moments;moments corruption;moments correction