Applied Catalysis B: Environmental, Vol.97, No.3-4, 381-388, 2010
Time-resolved operando X-ray absorption study of CuO-CeO2/Al2O3 catalyst during total oxidation of propane
The local structure of the copper phase of a CuO-CeO2/Al2O3 catalyst and its activity for the total oxidation of propane have been studied under working conditions, using time-resolved X-ray absorption spectroscopy (XAS) in transmission mode at the Cu K edge coupled with on-line mass spectrometry (MS). In the temperature range of 573-723 K, the copper phase of the catalyst remains oxidized (i.e. Cu2+) during total oxidation reaction conditions (1%C3H8-5%O-2/He), while three species are present (i.e. Cu2+, Cu1+ and Cu-0) during reduction (2%C3H8/He) and re-oxidation (10%O-2/He) treatments where a two-step mechanism is found. Catalyst reduction is fully reversible, as the Cu2+ nature of the catalyst is recovered after a reduction-oxidation cycle. Re-oxidation of the catalyst is two orders of magnitude faster than its reduction and has an apparent activation energy of 24 kJ/mol. On the other hand, catalyst reduction requires an apparent activation energy of 70 kJ/mol, which is equal to the apparent activation energy determined under total oxidation reaction conditions. These results give support to a Mars-van-Krevelen reaction scheme with the copper phase of the catalyst being close to a fully oxidized state. (C) 2010 Elsevier B.V. All rights reserved.
Keywords:Structure-activity investigation;Supported metal oxides;Reduction and oxidation mechanism;Propane total oxidation;Volatile organic compounds