화학공학소재연구정보센터
Applied Surface Science, Vol.256, No.22, 6805-6813, 2010
Self-assembled octadecyltrichlorosilane monolayer formation on a highly hydrated silica film
A MVD silica layer that consists of a highly hydrated surface favorable for organosilane surface reaction is investigated. The MVD silica layer lacks free surface silanol groups while supporting a more extensive adsorbed water layer as compared to oxidized Si(1 0 0). Octadecyltrichlorosilane monolayers (OTS) deposited on the MVD silica layer are found to follow the same mechanisms of growth and exhibit properties comparable to those formed on oxidized Si(1 0 0) surfaces. The growth process of octadecylsiloxane films is investigated as a function of immersion time and temperature by utilizing ATR-FTIR, ellipsometry, contact angle analysis, and AFM. The MVD silica layer is shown to support an ordered interfacial water structure that is more tightly bound due to a higher degree of hydrogen bonding associated with the hydroxylated surface. The importance of interfacial water on the OTS film formation process is highlighted and the role of free OH groups on the adsorption mechanism is diminished. It is shown that OTS films can be formed on a highly hydrated surface comparable to those formed on oxidized Si(1 0 0) surfaces. (C) 2010 Elsevier B. V. All rights reserved.