화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.388, No.2, 389-394, 2009
Resveratrol prevents hyperglycemia-induced endothelial dysfunction via activation of adenosine monophosphate-activated protein kinase
Endothelial dysfunction secondary to persistent hyperglycemia plays a key role in the development of type 2 diabetic vascular disease. The aim of the present study was to examine the protective effect of resveratrol against hyperglycemia-induced endothelial dysfunction. In cultured human umbilical vein endothelial cells (HUVECs), resveratrol (10-100 mu M) concentration dependently enhanced phosphorylation of endothelial nitric oxide synthesis (eNOS) at Ser1177 and nitric oxide (NO) production. In addition, resveratrol can increase the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) at Thr172 and suppress high glucose-induced generation of superoxide anion. In mouse aortic rings, resveratrol (1-100 mu M) elicited endothelium-dependent vasodilatations and alleviated high glucose-mediated endothelial dysfunction. All these beneficial effects of resveratrol on the endothelium were abolished by pharmacological antagonism of AMPK by compound C. These results provide new insight into the protective properties of resveratrol against endothelial dysfunction caused by high glucose, which is attributed to the AMPK mediated reduction of superoxide level. (C) 2009 Elsevier Inc. All rights reserved.