Macromolecular Research, Vol.18, No.8, 759-765, August, 2010
Effect of Solvents on High Aspect Ratio Polyamide-6 Nanofibers via Electrospinning
E-mail:
The effect of the solvent on the formation of high aspect ratio ultrafine fibers in polyamide-6 using an electrospinning technique was examined systematically. In this study, formic acid, dichloromethane, acetic acid, chlorophenol, hexafluoroisopropanol, and trifluoroacetic acid via single and mixed solvent system were used for the production of high aspect ratio nanofibers in polyamide-6. Formic acid and mixtures of formic acid/dichloromethane, formic acid/acetic acid, and formic acid/chlorophenol can lead to the very clear dissolution of polyamide-6, enabling their subsequent electrospinning to obtain high aspect ratio nanofibers. Formic acid was found to be the most suitable solvent system for obtaining high aspect ratio nanofibers in polyamide-6. The conductivity of polyamide-6 in formic acid was very high demonstrating an increasing level of free ions in solution. The average diameter of the high aspect ratio nanofibers was approximately one order of magnitude lower than that of main fibers. These findings suggest that the formation of high aspect ratio nanofibers relies strongly on the specific properties, such as the poly-electrolytic behavior of polyamide-6 in the solvent.
- Pey JL, Anti-Corros. Methods Mater., 44, 94 (1997)
- Stephens JS, Chase DB, Rabolt JF, Macromolecules, 37(3), 877 (2004)
- Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L, Biomaterials, 28, 3338 (2007)
- Doshi J, Reneker DH, J. Electrostat., 35, 151 (1995)
- Deitzel JM, Kleinmeyer J, Harris D, Tan NCB, Polymer, 42(1), 261 (2001)
- Gibson PW, Schreuder-Gibson HL, Rivin D, AIChE J., 45(1), 190 (1999)
- Bergshoef MM, Vancso GJ, Adv. Mater., 11(16), 1362 (1999)
- Kim JS, Reneker DH, Polym. Compos., 20, 124 (1999)
- Zeng J, Yang L, Liang Q, Zhang X, Guana H, Xua X, Chen X, Jing X, J. Control. Release, 105, 43 (2005)
- Taepaiboon P, Rungsardthong U, Supaphol P, Nanotechnology, 17, 2317 (2006)
- Wutticharoenmongkol P, Sanchavanakit N, Pavasant P, Supaphol P, J. Nanosci. Nanotechnol., 6, 514 (2006)
- Ayutsede J, Gandhi M, Sukigara S, Ye HH, Hsu CM, Gogotsi Y, Ko F, Biomacromolecules, 7(1), 208 (2006)
- Cho D, Yun SH, Kim J, Lim S, Park M, Lee SS, Lee GW, Macromol. Res., 12(1), 119 (2004)
- Wannatong L, Sirivat A, Supaphol P, Polym. Int., 53, 1851 (2004)
- Ding B, Li C, Miyauchi Y, Kuwaki O, Shiratori S, Nanotechnology, 17, 3685 (2006)
- Behler K, Havel M, Gogotsi Y, Polymer, 48(22), 6617 (2007)
- Supaphol P, Uppatham CM, Nithitanaku M, Macromol. Mater. Eng., 290, 933 (2005)
- De Vrieze S, Westbroek P, Van Camp T, De Clerck K, J. Appl. Polym. Sci., 115(2), 837 (2010)
- Heikkila P, Harlin A, Eur. Polym. J., 44, 3067 (2008)
- Budavari S, An Encyclopedia of Chemicals, Drugs, and Biologicals, 12th Edition, Merck & Co., New Jersey, 1996, p.359.
- Allcock HR, Lampe FW, Mark JE, Contemporary Polymer Chemistry, 3rd Edition, Pearson Education, Co., New Jersey, 2003, p.647.
- Samperi F, Montaudo M, Puglisi C, Alicata R, Montaudo G, Macromolecules, 36(19), 7143 (2003)
- Schaefgen JR, Trivisonno CF, J. Am. Chem. Soc., 73, 4580 (1951)
- McGrath JE, Ring-Opening Polymerization, American Chemical Society, Washington D.C., 1985, p. 7.
- Jung YH, Kim HY, Lee DR, Park SY, Khil MS, Macromol. Res., 13(5), 385 (2005)