화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.16, No.5, 767-773, September, 2010
Preparation, thermal properties and thermal reliability of eutectic mixtures of fatty acids/expanded vermiculite as novel form-stable composites for energy storage
E-mail:,
This paper deals with the preparation, characterization, thermal properties and thermal reliability of novel form-stable composite phase change materials (PCMs) composed of eutectic mixtures of fatty acids and expanded vermiculite for thermal energy storage. The form-stable composite PCMs were prepared by incorporation of eutectic mixtures of fatty acids (capric-lauric, capric-palmitic and capric-stearic acids) within the expanded vermiculite by vacuum impregnation method. The composite PCMs were characterized by SEM and FTIR techniques. Thermal properties of the composite PCMs were determined by differential scanning calorimeter (DSC) method. DSC results showed that the melting temperatures and latent heats of the prepared composite PCMs are in the range of 19.09-25.64 ℃ and 61.03-72.05 J/g, respectively. The thermal cycling test including 5000 heating and cooling process was conducted to determine the thermal reliability of the composite PCMs. The test results showed that the composite PCMs have good thermal reliability and chemical stability. Furthermore, thermal conductivities of the composite PCMs were increased by adding 10 wt% expanded graphite. Based on all results, the prepared form-stable composites can be considered as promising PCMs for low temperature thermal energy storage applications due to their satisfactory thermal properties, good thermal reliability, chemical stability and thermal conductivities.
  1. Zalba B, Marin JM, Cabeza LF, et al., Appl. Therm. Eng., 23, 251 (2003)
  2. Dincer I, Rosen MA, Thermal Energy Storage, Systems and Applications, Wiley,New York (2002)
  3. Sarı A, Karaipekli A, Sol. Energy Mater. Sol. Cells., 93, 571 (2009)
  4. Zalba B, Marin JM, Cabeza LF, Mehling H, Int. J. Refrigeration., 27, 839 (2004)
  5. Zhang D, Li J, Zhou J, Wu K, Cement Concrete Res., 34, 927 (2004)
  6. Feldman D, Banu D, Hawes D, et al., Sol. Energy Mater., 22, 231 (1991)
  7. Mehling H, Hiebier S, Cabeza LF, News on the application of PCMs for heating and cooling of buildings. Advanced thermal energy storage through phase change materials and chemical reactions feasibility studies and demonstration project, in: Third Workshop. IEA, ECES IA Annex 17, Tokyo, Japan, October 1.2 (2002)
  8. Feldman D, Banu D, Hawes DW, Sol. Energy Mater. Sol. Cells., 36, 147 (1995)
  9. Kissock JK, Hanning JM, Whitney TI, et al. in: Proceedings of the 1st IEA ECES IA Annex 10 Workshop, Adana, Turkey, 69 (1998)
  10. Zhang D, Zhou J, Wu K, et al., Sol. Energy., 78, 351 (2005)
  11. Karaipekli A, Sarı A, Sol. Energy., 83, 323 (2009)
  12. Feldman D, Shapiro MM, Fazio P, Polym. Eng. Sci., 25, 406 (1985)
  13. Hawes DW, Feldman D, Banu D, Energy Build., 20, 77 (1993)
  14. Hadjieva M, Stoykov R, Filipova T, Renew. Energy, 19(1), 111 (2000)
  15. Zhang D, Tian S, Xiao D, Sol. Energy., 81, 653 (2007)
  16. Fang XM, Zhang ZG, Energy Build., 38(4), 377 (2006)
  17. Khudhair AM, Farid MM, Energy Conv. Manag., 45(2), 263 (2004)
  18. Karaipekli A, Sarı A, Renew. Energy., 33, 2599 (2008)
  19. Hasan A, Sayigh AAM, Renew. Energy., 4, 69 (1994)
  20. Kim YW, Chung KW, Lee EA, Seo YG, J. Ind. Eng. Chem., 14(6), 752 (2008)
  21. Rozanna D, Chuah TG, Salmiah A, et al., Int. J. Green Energy., 1, 1 (2004)
  22. Sari A, Karaipekli A, Kaygusuz K, Int. J. Energy Res., 32(2), 154 (2008)
  23. Weilong W, Xiaoxi Y, Yutang F, Jing D, Jinyue Y, Appl. Energy., 86, 1479 (2009)
  24. Shilei L, Neng Z, Feng GH, Energy Build., 38(6), 708 (2006)
  25. Shilei L, Feng G, Zhu N, Li D, Energy Build., 10, 1088 (2007)
  26. Nomura T, Okinaka N, Akiyama T, Mater. Chem. Phys., 115(2-3), 846 (2009)
  27. Radhakrishnan R, Gubbins KE, Mol. Phys., 96, 1249 (1999)
  28. Radhakrishnan R, Gubbins KE, Watanabe A, Kaneko K, J. Chem. Phys., 111(19), 9058 (1999)
  29. Ishikiriyama K, Todoki M, Kobayashi T, Tanzawa H, J. Colloid Interface Sci., 173(2), 419 (1995)
  30. Zhang D, Wu K, Li Z, J. Tongji Univ., 32, 1163 (2004)
  31. Sari A, Karaipekli A, Mater. Chem. Phys., 109(2-3), 459 (2008)
  32. Xiangfa Z, Hanning X, Jian F, et al., Compos. Sci. Technol., 69, 1246 (2009)
  33. Rozana D, Salmiah A, Chuah TG, et al., J. Oil Palm Res., 17, 41 (2005)
  34. Karaipekli A, Sarı A, J. Sci. Ind. Res., 66, 470 (2007)
  35. Fang XM, Zhang ZG, Chen ZH, Energy Conv. Manag., 49(4), 718 (2008)
  36. Feldman D, Banu D, Thermochim. Acta, 272, 243 (1996)
  37. Kuznik F, Virgone J, Noel J, Appl. Therm. Eng., 28, 1291 (2008)
  38. Wang W, Yang X, Fang Y, Ding J, Yan J, Appl. Energy., 86, 1196 (2009)
  39. Xiao M, Feng B, Gong KC, Energy Conv. Manag., 43(1), 103 (2002)
  40. Py X, Olives R, Mauran S, Int. J. Heat Mass Transf., 44(14), 2727 (2001)