화학공학소재연구정보센터
Biomacromolecules, Vol.11, No.3, 815-819, 2010
Adjustable Mutations in Lactate (LA)-Polymerizing Enzyme for the Microbial Production of LA-Based Polyesters with Tailor-Made Monomer Composition
Lactate (LA)-polymerizing enzyme (LPE) is a newly established class of polyhydroxyalkanoate (PHA) synthase, which can incorporate LA units into a polymer chain. We previously synthesized P(LA-co-3-hydroxybutyrate)s [P(LA-co-3HB)s] in recombination Escherichia coli using the first LPE, which is the Ser325Thr/Glu481Lys mutant of PHA synthase from Pseudomonas sp. 61-3 [PhaCl(Ps)ST/QK]. In this study, we finely regulated LA fraction in the copolymer by saturated mutations at position 392 (F392X), which corresponds to the activity-enhancing mutations at position 420 of PHA synthase from Ralstonia eutropha. Among the 19 saturated mutants of LPe at position 392, 17 mutants produced P(La-co-3HB)s with various LA fractions (16-45 mol %), whereas PhaCl(Ps)ST/QK produced P(LA-co-3HB) with 26 mol % LA under the same culture condition. In particular, the F392S mutation exhibited the highest LA fraction of 45 mol %, and also increased polymer content (62 wt %) compared with PhaCl(Ps)ST/QK (44 wt %). Combination of the F392S mutant and anaerobic culture conditions, which promote LA production, led to a further increase in LA fraction up to 62 mol%. The P(LA-co-3HB)s with various LA fractions exhibited altered melting temperatures and melting enthalpy depending on their monomer composition. Accordingly, the mutations at position 392 in LPE greatly contributed to fine-tuning of the LA fraction in the copolymers that is useful for regulating LA fraction-dependent thermal properties.