Biomass & Bioenergy, Vol.33, No.12, 1670-1679, 2009
Biomass yield and energy analysis of soybean production in relation to fertilizer-NPK and organic manure
The study attempts to quantify the root biomass and density, nodulation, crop biomass and grain yield of soybean, to analyze crop growth and energy (renewable and non-renewable) inputs in relation to fertilizer-NPK and organic manure. Observations were recorded from soybean grown with no fertilizer, NPK and NPK + FYM (farmyard manure). I The root biomass (BMroot) increased significantly with NPK + FYM compared to NPK and control. The trend of BMroot was best fitted with a third order polynomial. Root length density was higher in NPK + FYM. Biomass of stem, petiole and leaf were significantly greater in NPK + FYM than other treatments, relative contribution to total biomass at physiological maturity were stem 29%, petiole 9%, leaf 17% and pod 46%; quadratic regression models best represented the stem, petiole and leaf biomass data. A maximum LAI of 4.88, total biomass of 633 g m(-2) at maturity, CGR of 18.4 g m(-2) d(-1) were recorded in NPK + FYM. Grain yields increased by 72.5 and 98.5%, and stover yields by 56.0 and 94.8% in NPK and NPK + FYM, respectively over control. Though the total energy input in NPK + FYM was greater than those in NPK and control, the share of renewable energy was much higher with greater net energy output and non-renewable energy productivity in NPK + FYM than NPK. The use efficiency of non-renewable energy was also higher in NPF + FYM. Thus, a combination of NPK-fertilizer and organic manure (FYM) could be the viable nutrient management option for soybean production. (C) 2009 Elsevier Ltd. All rights reserved.
Keywords:Root biomass;Biomass partitioning;Nodulation;CGR;Yield;Energy;Fertilizer;Manure;Soybean (Glycine max (L.) Merrill)