Chemical Engineering Science, Vol.65, No.14, 4239-4249, 2010
Dynamic simulation of a cascade fluidized-bed membrane reactor in the presence of long-term catalyst deactivation for methanol synthesis
In this work, a dynamic model for a cascade fluidized-bed hydrogen permselective membrane methanol reactor (CFBMMR) has been developed in the presence of long-term catalyst deactivation. In the first catalyst bed, the synthesis gas is partly converted to methanol in a water-cooled reactor, which is a fluidized-bed. In the second bed, which is a membrane assisted fluidized-bed reactor, the reaction heat is used to preheat the feed gas to the first bed. This reactor configuration solves some observed drawbacks of new conventional dual type methanol reactor (CDMR) and even fluidized-bed membrane dual type methanol reactor (FBMDMR) such as pressure drop, internal mass transfer limitations, radial gradient of concentration and temperature in both reactors. A dynamic two-phase theory in bubbling regime of fluidization is used to model and simulate the proposed reactor. The proposed model has been used to compare the performance of a cascade fluidized-bed membrane methanol reactor with fluidized-bed membrane dual-type methanol reactor and conventional dual-type methanol reactor. The simulation results show a considerable enhancement in the methanol production due to the favorable profile of temperature and activity along the CFBMMR relative to FBMDMR and CDMR systems. (C) 2010 Elsevier Ltd. All rights reserved.
Keywords:Dynamic simulation;Cascade fluidized-bed;Membrane reactor;Methanol synthesis;Hydrogen permselective membrane;Catalyst deactivation