Applied Chemistry for Engineering, Vol.21, No.6, 627-631, December, 2010
암모늄염으로 처리된 리기다 소나무의 난연성
Combustion-Retardation Properties of Pinus rigida Treated with Ammonium Salts
E-mail:
초록
본 연구에서는 암모늄염 처리에 의하여 리기다 소나무를 바탕으로한 재료의 난연성을 시험하였다. 실온에서 3종류의 암모늄염 즉, ammonium sulfate, monoammonium phosphate, 그리고 diammonium phosphate의 20 wt% 수용액에 각각 리기다 소나무를 함침시켜 건조시킨 후 콘칼로리미터(ISO 5660-1)를 이용하여 그들의 연소성을 조사하였다. 암모늄염으로 처리한 시험편들은 미처리된 시험편에 비하여 연소억제성을 향상시켰다. 그러나 CO의 발생량은 증가하여 정도에 따라 독성 영향을 미치는 것으로 보여졌다. 또한 미처리된 순수 시험편에 비해 총연기방출율과 총연기량이 모두 낮은 값을 나타내었다. 처리된 시험편 중 diammonium phosphate로 처리된 것이 가장 연소억제 효과가 강한 것으로 판단되었다.
This study was performed to test the combustion-retardation properties of Pinus rigida-based materials by the treatment of ammonium salts. Pinus rigida plate was soaked by the treatment with three 20 wt% ammonium salt solutions consisting ammonium sulfate (AMSF), monoammonium phosphate (MAPP), and diammonium phosphate (DAPP), respectively, at the room temperature. After the drying specimen treated with chemicals, combustion properties were examined by the cone calorimeter (ISO 5660-1). When the ammonium salts were used as the retardant for Pinus rigida, the flame retardancy improved due to the treated ammonium salts in the virgin Pinus rigida. However the specimen shows increasing CO over virgin Pinus rigida and It is supposed that toxicities depend on extents. Also, the specimen with ammonium sulfate showed both the lower total smoke release (TSR) and lower total smoke production (TSP) than those of virgin plate. Among the specimens, the sample treated with diammonium phosphate showed a strong inhibitory effect of combustion.
- Baysal E, Altinok M, Colak M, Ozaki SK, Toker H, Bioresour. Technol., 98 (1101)
- LeVan SL, Chemistry of fire Retardancy, ed. R. Rowell, The chemistry of solid wood, 531, American Chemical Society, Washington D. C. (1984)
- Kozlowski R, Helwig M, Progress in flame retardancy and flammability testing, 1st int conf. Progess in flame Retardancy and Flammability Testing, Institute of Natural Fibres, Poznan, Poland. (1995)
- Hardy ML, Polym. Degrad. Stab., 64, 545 (1999)
- Tanaka Y, Epoxy Resin chemistry and Technology, Marcel Dekker, New York. (1988)
- Boonmee N, Quintiere JG, Twenty-ninth Symposium(international) on combustion, 29, 289, The Combustion Institute. (2002)
- Boonme N, Quintiere JG, Thirtieth Symposioum (International) on combustion, The Combustion Institute, 30, 2303 (2005)
- Mikkola E, Fire Safety Science, Proceedings of the Third International Symposium, 547, Elsevier, Applied Science, London (1991)
- Quintiere JG, A Semi-quantitative Model for the Burning Rate of Solid Materials, NISTIR 4840, National Institute of Standards and Technology, Gaithersburg, M.D., U.S.A. (1992)
- Spearpoint MJ, Quintiere JG, Combust. Flame, 123(3), 308 (2000)
- Brenden JJ, How Wine Inorganic Salts Affected Smoke Yield From Donglas-five Plywood, P.B, U.S. Forest Service, Research Paper FPL-249 (1975)
- Chung YJ, J. Korean Ind. Eng. Chem., 18(3), 251 (2007)
- Hirschler MM, Adv. Combust. Toxicol., 2, 229 (1990)
- ISO 5660-1, Genever (2002)
- Simpso WT, Wood Handbook-Wood as an Engineering Material, Chap.12, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsine, U.S.A. (1987)
- Delichatsios M, Paroz B, Bhargava A, Fire Saf. J., 38, 219 (2003)
- Spearpoint MJ, Quintiere JG, Combust. Flame, 123(3), 308 (2000)
- Babrauskas V, The SFPE Handbook of Fire Protection Engineering, Fourth ed., National Fire Protection Association, Massatusetts, U.S.A. (2008)
- Quintire JG, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, U.S.A. (1998)