화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.21, No.6, 638-642, December, 2010
α,β-tetra(phenoxy, 2-naphthoxy, 4-tritylphenoxy) Oxovanadium 프탈로시아닌 유도체의 합성 및 특성에 관한 연구
The Study for Synthesis and Characteristic of α,β-tetra(phenoxy, 2-naphthoxy, 4-tritylphenoxy) Oxovanadium Phthalocyanine Derivatives
E-mail:
초록
본 연구에서는 벤젠고리의 α와 β-위치에 phenoxy, 2-naphthoxy 또는 4-trityl phenoxy 치환기가 도입된 프탈로니트릴 유도체들을 합성하였고, 이들 중간체들을 이용하여 전자 주게 특성을 가지는 치환기가 도입된 oxovanadium phthalocyanine (VOPc) 유도체들을 성공적으로 합성하였다. 시료들의 구조 특성 및 분자량은 1H-NMR, FT-IR 및 MALDI-TOF 형 질량분석기를 이용하여 측정·분석하였고, 광학적 및 화학적 특성은 UV-Vis 분광기, X-ray 회절기 및 열분석기를 이용하여 측정·분석하였다. 합성된 VOPc 유도체들의 최대흡수파장 값은 약 684∼726 nm이었으며, 치환기의 도입으로 말미암아 용해도가 향상되거나 Q 밴드가 이동하였다.
After phthalonitrile derivatives were synthesized by the introduction of phenoxy, 2-naphthoxy or 4-trityl phenoxy group on α- and β-position, oxovanadyl phthalocyanine (VOPc) derivatives containing electron-rich substituent group at different position were synthesized successfully in this investigation. The chemical structure of samples was determined by the means of 1H-NMR, MALDI-TOF mass spectroscopy, and FT-IR spectrometer. Also, optical and chemical properties were determined by the means of UV-Vis spectrometer, X-ray diffractometry, and thermo gravimetry. It was found that the maximum absorbing wavelength of VOPc derivatives ranged from 684 to 726 nm. Also, their solubility and Q-band were enhanced and shifted by the introduction of substitute group, respectively.
  1. Schmid G, Sommerauer M, Geyer M, Hanack M, Phthalocyanines: Properties and Applications, ed. C. C. Leznoff, and A.B. P. Lever, 4, 1, Wiley-VCH Press, New York. (1989)
  2. Kasuga K, Tsutsui M, Coord. Chem. Rev., 32, 67 (1980)
  3. Pthalocyanine Research and Applications, ed. A. L. Thomas, 5, CRC Press, Fla (1990)
  4. The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith, and R.Guilard, 16, Academic Press, New York (2003)
  5. Frampton CS, O’Conner JM, Retevson J, Silver J, Displays, 174 (1988)
  6. Gurek A, Ahsen V, Gul A, Bekaroglu O, J. Chem. Soc., Dalton Trans., 3367 (1991)
  7. Emmelius M, Pawlowski G, Vollman HW, Angew Chem Int., 28, 1445 (1989)
  8. Phthalocyanine Materals: Synthesis, Structure and Function, ed. N.B. Mckeownn, Cambridge Univ. Press, Cambridge. (1998)
  9. Christie RM, Dyes & Pigments., 27, 35 (1995)
  10. Electronic Spectra of Phthalocyanines and Related Compounds, ed. E. A. Luk’yanets, NIOPIK Press, Moscow. (1989)
  11. Griffiths CH, Mol. Cryst. Liq. Cryst., 33, 149 (1979)
  12. Ziolo RF, Grifiths CH, J. Chem. Soc., Dalton Trans., 11, 2300 (1980)
  13. Simon J, Andre JJ, Molecular Semiconductors, ed. J. M. Lehn and C. W. Rees, Springer-Verlag, Berlin (1985)
  14. B. S. In, Phthalocyanines: Properties and Applications, ed. C. C.Leznoff and A. B. P. Lever, 3, 119, Wiley-VCH Press, New York (1993)
  15. Hanack M, Haisch P, Synthesis., 1251 (1995)
  16. Kobayashi N, Ogata H, Nonaka N, Luk’yanets EA, Chem.Eur. J., 9, 5123 (2003)
  17. Park JH, MS Thesis, Pukyoung National University, Busan, Korea (2007)
  18. George RD, Snow AW, J. Heterocyclic Chem., 32, 495 (1995)
  19. Young JG, Onyebuagu W, J. Org. Chem., 55, 2155 (1990)
  20. Handa M, Sogabe K, Inorganica Chimica., 41, 230 (1995)