화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.21, No.6, 689-693, December, 2010
천연고무로 결합된 과산화수소 정량 바이오센서의 전류법 속도론
Amperometric Kinetics of Hydrogen Peroxide Biosensor Bound with Natural Rubber
E-mail:
초록
톨루엔에 녹인 천연고무를 탄소가루의 결합재로 사용하여 바이오센서를 제작하였을 때, 반죽은 용매가 증발한 후 기계적 물성을 보였다. 이 특성은 탄소반죽전극 실용화의 선행 조건을 만족시키는 것으로, 이 특성의 활용성을 살펴보기 위하여 과산화수소 정량을 위한 바이오센서를 제작하고, 그것의 전기화학적인 정량 및 정성적 특성을 파악하기 위하여 여러 가지 속도론적 파라메타, 즉 대칭인자(0.37), 교환전류밀도(i(0), 0.075 mAcm^(-2)), 이중층의 축전용량(C(d), 9.7 × 10^(-3)F), 시간상수(τA, 0.92 s), 최대전류(i(max), 5.92 × 10^(-7)Acm^(-2)), Michaelis 상수(K(M), 1.99 × 10^(-3)M) 및 기타 상수들을 도출하였다. 이 실험적 결과는 천연고무가 탄소가루의 결합재로 활용될 수 있음을 보여 주었다.
When natural rubber dissolved in toluene comes into use as a binder of carbon powder, the volatilization of solvent just after the construction of biosensor brought the mechanical robustness on the paste. This characteristic satisfied the pre-requisite condition for the practical use of carbon paste electrode and a biosensor for the determination of hydrogen peroxide was designed. In order to evaluate its electrochemical qualitative and quantitative behaviors, various electrochemical kinetic parameters of the electrode, e.g. the symmetry factor (α, 0.37), the exchange current density (i(0), 0.075 mAcm^(-2)), the capacitanceof double layer (C(d), 9.7 × 10^(-3)F), the time constant (τA, 0.92 s), the maximum current (imax, 5.92 × 10^(-7)Acm^(-2)), the Michaelis constant (KM, 1.99 × 10^(-3)M) and others were investigated. Results show that natural rubber is a promising binder of carbon powder.
  1. Cheng TJ, Lin TM, Chang HC, Anal. Chim. Acta., 462, 261 (2009)
  2. Roy JJ, Abraham TE, Abijith KS, Kumar PVS, Thakur MS, Biosensors & Bioelectronics., 21, 206 (2005)
  3. Li YC, Bu WF, Wu LX, Sun CQ, Sens. Acturators B., 107, 921 (2002)
  4. Chen X, Zhang JZ, Wang BQ, Cheng GC, Dong SJ, Anal. Chim. Acta., 434, 255 (2001)
  5. Yang YF, Mu SL, Biosensors & Bioelectronics., 21, 74 (2005)
  6. Vostiar I, Tkac J, Sturdik E, Gemeiner P, Bioelectrochemistry., 56, 113 (2002)
  7. Miscoria SA, Barrera GD, Rivas GA, Sens. Acturators B., 115, 205 (2006)
  8. Miguel AS, Merkoci A, Alegret S, Sens. Acturators B., 69, 153 (2000)
  9. Tingry S, Innocent C, Touil S, Deratani A, Seta P, Mater. Sci. Eng. C., 26, 222 (2006)
  10. Yoon KJ, Bull. Kor. Chem. Soc., 25, 997 (2004)
  11. Wang J, Mo JW, Li SF, Porter J, Anal. Chim. Acta., 441, 183 (2001)
  12. Yoon KJ, Kim KJ, Kwon HS, J. Kor. Chem. Soc., 43, 271 (1999)
  13. Yoon KJ, Anal. Sci. Tech., 16, 504 (2003)
  14. Yoon KJ, J. Kor. Chem. Soc., 48, 654 (2004)
  15. Choi SY, Yoon KJ, Elastomer., 41, 231 (2006)
  16. Yoon KJ, Bull. Kor. Chem. Soc., 29, 2264 (2008)
  17. Lee BG, Rhyu KB, Yoon KJ, Bull. Kor. Chem. Soc., 30, 2457 (2009)
  18. Lee BG, Rhyu KB, Yoon KJ, J. Ind. Eng. Chem., 16(3), 340 (2010)
  19. Stevens M, Polymer Chemistry, 3rd ed. p476, Oxford, New York USA (1999)
  20. Brydson JA, Rubbery Materials and Compounds, p70, Elsevier Applied Science, London and New York (1988)
  21. Mansouri A, Makris DP, Kepalas P, J. Pham. Biochem. Anal., 39, 22 (2005)
  22. Svensson S, Olin AC, Larstad M, Ljungkvist G, Toren K, J. Chromatogr. B., 809, 199 (2004)
  23. Wu M, Lin ZH, Schaferling M, Durkop A, Wolfbeis OS, Anal. Biochem., 340, 66 (2005)