화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.28, No.1, 138-142, January, 2011
Effect of oligomer on dye-sensitized solar cells employing polymer electrolytes
E-mail:
The effect of oligomer (Mn=400-500 g/mol) on dye-sensitized solar cells (DSSC) employing polymer electrolytes consisting of poly(epichlorohydrin-co-ethylene oxide) (Epichlomer), LiI, 1-methyl-3-propylimidazolium iodide (MPII) and I2 is investigated. Five kinds of oligomer, poly(ethylene glycol) (PEG, Mn=400 and 1,000 g/mol), poly(ethylene glycol) dimethyl ether (PEGDME), poly(propylene glycol) (PPG) and poly(ethylene glycol) diglycidyl ether (PEGDGE), were introduced to elucidate the role of terminal groups and chain length. The coordinative interactions and structures of polymer electrolytes were characterized by FT-IR spectroscopy and X-ray diffraction (XRD). The improved interfacial contact between the electrolytes and the electrodes by the oligomer addition was confirmed using a field-emission scanning electron microscope (FE-SEM). The electrolytes exhibited ionic conductivities on the order of 10^(-4) S/cm, but PEGDGE electrolyte showed much lower value (~10^(-8) S/cm). As a result, the energy conversion efficiency of DSSC was significantly affected by the oligomer. For example, the DSSC employing PEGDME with methyl terminal groups exhibited 3.95% at 100 mW/cm2, which is 200-fold higher than that employing PEGDGE.
  1. Yoshimoto N, Nomura H, Shirai T, Ishikawa M, Morita M, Electrochim. Acta, 50(2-3), 275 (2004)
  2. Goh YT, Patel R, Im SJ, Kim JH, Min BR, Korean J. Chem. Eng., 26(2), 518 (2009)
  3. Kim JH, Min BR, Won J, Kang YS, Macromolecules, 36(12), 4577 (2003)
  4. Murai S, Mikoshiba S, Sumino H, Kato T, Hayase S, Chem.Commun., 13, 1534 (2003)
  5. de Freitas JN, Goncalves AD, de Paoli MA, Durrant JR, Nogueira AF, Electrochim. Acta, 53(24), 7166 (2008)
  6. Lee JW, Hwang KJ, Shim WG, Park KH, Gu HB, Kwun KH, Korean J. Chem. Eng., 24(5), 847 (2007)
  7. Benedetti JE, Paoli MA, Nogueira AF, Chem. Commun., 9, 1121 (2008)
  8. O’Regan B, Gratzel M, Nature., 353, 737 (1991)
  9. Gratzel M, Inorg. Chem., 44(20), 6841 (2005)
  10. Wang P, Zakeeruddin SM, Moser JE, Humphry-Baker R, Gratzel M, J. Am. Chem. Soc., 126(23), 7164 (2004)
  11. Matsumoto T, Matsuda T, Suda T, Hagiwara R, Ito Y, Miyazaki Y, Chem. Lett., 1, 26 (2001)
  12. Bandara J, Weerasinghe H, Sol. Energy Mater. Sol. Cells., 85, 385 (2005)
  13. Kato T, Okazaki A, Hayase S, J. Photochem. Photobiol. A: Chem., 179, 42 (2006)
  14. Lu S, Koeppe R, Gunes S, Sariciftci NS, Sol. Energy Mater. Sol. Cells., 91, 1081 (2007)
  15. Biancardo M, West K, Krebs FC, Sol. Energy Mater. Sol. Cells., 90, 2575 (2006)
  16. Nogueira VC, Longo C, Nogueira AF, Soto-Oviedo MA, De Paoli MA, J. Photochem. Photobiol. A: Chem., 181, 226 (2006)
  17. Nogueira AF, Durrant JR, De Paoli MA, Adv. Mater., 13(11), 826 (2001)
  18. Nakade S, Kanzaki T, Wada Y, Yanagida S, Langmuir, 21(23), 10803 (2005)
  19. Kim YJ, Kim JH, Kang MS, Lee MJ, Won J, Lee JC, Kang YS, Adv. Mater., 16(19), 1753 (2004)
  20. Kim JH, Kang MS, Kim YJ, Won J, Park NG, Kang YS, Chem. Commun., 14, 1662 (2004)
  21. Kang MS, Kim JH, Won J, Kang YS, J. Phys. Chem. C., 111, 5222 (2007)
  22. Basak P, Manorama SV, Eur. Polym. J., 40, 1155 (2004)
  23. Zalewska A, Stygar J, Ciszewska E, Wiktorko M, Wieczorek W, J. Phys. Chem., 105, 5847 (2001)
  24. Kang MS, Kim YJ, Won J, Kang YS, Chem. Commun., 21, 2686 (2005)
  25. Sharghi H, Eskandari MM, Ghavami R, J. Mol. Catal. A., 55, 215 (2004)
  26. Klinklai W, Kawahara S, Marwanta E, Mizumo T, Isono Y, Ohno H, Solid State Ion., 177(37-38), 3251 (2006)
  27. Idris R, Glasse MD, Latham GRJ, Linford RG, Schlindwein WS, J. Power Sources, 94(2), 206 (2001)