화학공학소재연구정보센터
Macromolecular Research, Vol.18, No.10, 960-966, October, 2010
On preference of insertion mechanism in the ethylene polymerization catalyzed by half-titanocene complexes with aryloxy ligands: Static and dynamic theoretical studies
E-mail:
The Ziegler-Rauk bond-energy decomposition analysis was performed for the frontside (FS) and backside (BS) transition states of ethylene insertion in the processes catalyzed by half-titanocenes with phenoxy ligands to rationalize the origin of the energetic preference of the backside insertion observed for the complexes with monosubstituted phenoxide(Type 4 catalysts). The final preference of the backside or frontside transition state comes as a balance between the electronic preference of the former, and the steric preference of the latter. The unique energetic preference of the backside insertion observed for Type 4 catalysts appears to be a result of reduced steric crowding. The openness near the metal center and conformational flexibility leads to enhanced catalytic activity of those systems. In addition, Car-Parinello molecular dynamic simulations were carried out to examine the influence of entropic effects on the preference of the insertion mechanism. For Type 4 catalysts, the spontaneous frontside insertion was observed. Therefore, at the free-energy level, frontside insertion becomes viable due to entropic destabilization of the backside transition state.
  1. Sinn H, Kaminsky W, Adv. Organomet. Chem., 18, 99 (1980)
  2. Alt HG, Koppl A, Chem. Rev., 100(4), 1205 (2000)
  3. Ittel SD, Johnson LK, Brookhart M, Chem. Rev., 100(4), 1169 (2000)
  4. Gibson VC, Spitzmesser SK, Chem. Rev., 103(1), 283 (2003)
  5. Nomura K, Liu JY, Padmanabhan S, Kitiyanan B, J. Mol. Catal. A-Chem., 267(1-2), 1 (2007)
  6. Sita LR, Babcock R, Organometallics, 17, 5228 (1998)
  7. Zhang S, Piers WE, Gao XL, Parvez M, J. Am. Chem. Soc., 122(23), 5499 (2000)
  8. Manz TA, Phomphrai K, Medvedev G, Krishnamurthy BB, Sharma S, Haq J, Novstrup KA, Thomson KT, Delgass WN, Caruthers JM, Abu-Omar MM, J. Am. Chem. Soc., 129(13), 3776 (2007)
  9. Chen YX, Marks TJ, Organometallics, 16, 3649 (1997)
  10. Stevens JC, Stud. Surf. Sci. Catal., 89, 277 (1994)
  11. Stevens JC, Stud. Surf. Sci. Catal., 101, 11 (1996)
  12. Stevens JC, Timmers FJ, Wilson DR, Schmidt GF, Nickias PN, Rosen RK, Knight GW, Lai SY, EP 90-309496 416815, 19900830 (1991).
  13. Hanaoka H, Hino T, Nabika M, Kohno T, Yanagi K, Oda Y, Imai A, Mashima K, J. Organomet. Chem., 692, 4717 (2007)
  14. Katayama H, Nabika M, Imai A, Miyashita A, Watanabe T, Johohji H, Oda Y, Hanaoka H, PCT Appl. WO 97-03992 (1997).
  15. Stephan DW, Stewart JC, Guerin F, Courtenay S, Kickham J, Hollink E, Beddie C, Hoskin A, Graham T, Wei P, Spence REVH, Xu W, Koch L, Gao X, Harrison DG, Organometallics, 22, 1937 (2003)
  16. Stephan DW, Stewart JC, Guerin F, Spence REVH, Xu W, Harrison DG, Organometallics, 18, 1116 (1999)
  17. Nomura K, Naga N, Miki M, Yanagi K, Imai A, Organometallics, 17, 2152 (1998)
  18. Nomura K, Naga N, Miki M, Yanagi K, Macromolecules, 31(22), 7588 (1998)
  19. Phomphrai K, Fenwick AE, Sharma S, Fanwick PE, Caruthers JM, Delgass WN, Abu-Omar MM, Rothwell IP, Organometallics, 25, 214 (2006)
  20. Kim TJ, Kim SK, Kim BJ, Hahn JS, Ok MA, Song JH, Shin DH, Ko J, Cheong M, Kim J, Won H, Mitoraj M, Srebro M, Michalak A, Kang SO, Macromolecules, 42(18), 6932 (2009)
  21. Cossee P, Tetrahedron Lett., 38, 12 (1960)
  22. Cossee P, J. Catal., 3, 80 (1964)
  23. Arlman EJ, J. Catal., 3, 89 (1964)
  24. Arlman EJ, Cossee P, J. Catal., 3, 99 (1964)
  25. Arlman EJ, J. Catal., 5, 178 (1966)
  26. Margl P, Deng L, Ziegler T, Organometallics, 17, 933 (1998)
  27. Margl P, Deng LQ, Ziegler T, J. Am. Chem. Soc., 120(22), 5517 (1998)
  28. Ziegler T, Rauk A, Inorg. Chem., 18, 1755 (1979)
  29. Ziegler T, Rauk A, Inorg. Chem., 18, 1558 (1979)
  30. Becke A, Phys. Rev., A, 38, 3098 (1988)
  31. Perdew JP, Phys. Rev. B, 34, 7406 (1986)
  32. Perdew JP, Phys. Rev. B, 33, 8822 (1986)
  33. te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gisbergen SJA, Snijders JG, Ziegler T, J. Comput. Chem., 22, 931 (2001)
  34. Baerends EJ, Ellis DE, Ros P, Chem. Phys., 2, 41 (1973)
  35. Baerends EJ, Ros P, Chem. Phys., 2, 52 (1973)
  36. te Velde G, Baerends EJ, J. Comput. Phys., 99, 84 (1992)
  37. Guerra CF, Visser O, Snijders JG, te Velde G, Baerends EJ, in Methods and Techniques in Computational Chemistry, METECC-95, Clementi E, Corongiu G, Eds., STEF, Cagliari, Italy, 1995, p 303-395.
  38. CPMD, Copyright IBM Corp 1990.2006, Copyright MPI fur Festkorperforschung Stuttgart 1997-2001.
  39. Hartwigsen C, Goedecker S, Hutter JK, Phys. Rev. B, 58, 3641 (1998)