화학공학소재연구정보센터
Current Microbiology, Vol.61, No.4, 267-273, 2010
Modifying Thermostability of appA from Escherichia coli
In order to improve the thermostability of Escherichia coli AppA phytase, Error-prone PCR was used to randomize mutagenesis appA gene, and a gene mutation library was constructed. A mutant I408L was selected from the library by the method of high-throughput screening with 4-methyl-umbelliferylphosphate (4-MUP). The appA gene of the mutant was cloned and expressed in E. coli Origami (DE3). The recombinant protein was purified by Ni-affinity chromatography, and the enzymatic features were analyzed. The results indicated that AppA phytase activities of mutant I408L and wild-type (WT) strain remained at 51.3 and 28%, respectively, after treatment at 85A degrees C for 5 min. It means that the thermostability enhancement of AppA phytase I408L was 23.3% more as compared with WT. The K (m) of both phytase were 0.18 and 0.25 mM, respectively, which indicated that the catalyzing efficiency of I408L was improved. AppA phytase of mutant I408L showed a significant enhancement against trypsin, which was nearly three times compared with WT. In addition, AppA phytase of mutant could be activated by Mg2+ and Mn2+; in contrast, it could be inhibited by Ca2+, Co2+, Cu2+, and K+ in varying degrees, and the enzymatic activity was almost lost the presence of Fe3+ and Zn2+. It appears that screening thermotolerant phytase of E. coli by high throughput screening with a fluorescence substrate is a fast, simple, and effective method. The mutant I408L obtained in this study could be used for the large-scale commercial production of phytase.