Electrochimica Acta, Vol.55, No.5, 1626-1629, 2010
A novel method for preparing LiFePO4 nanorods as a cathode material for lithium-ion power batteries
An effective method for synthesizing a one-dimensional nanostructure to improve the rate performance of LiFePO4 as the cathode material for Li-ion power batteries is described. The crystal structure, composition, and morphology of the prepared LiFePO4 were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM), respectively. The reaction mechanism of the LiFePO4 nanorods is discussed herein. Electrodes consisting of the LiFePO4 nanorods have better rate discharge capacities over a potential range of 2.5-4.2 V (vs. Li+/Li). These results are attributed to the shorter distance of electron transport and the fact that ion diffusion in the electrode material is limited by the nanorod radius. Our results indicate that the prepared LiFePO4 nanorods are promising cathode materials for Li-ion power batteries. This new process for synthesizing nanorod products from nanorod raw material can be extended to the preparation of other one-dimensional materials. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.