화학공학소재연구정보센터
Electrochimica Acta, Vol.55, No.16, 4783-4788, 2010
The influence of sodium ion as a potential fuel impurity on the direct methanol fuel cells
Na+ is a likely intrinsic impurity in water and is a sort of common cation impurity in the direct methanol fuel cells (DMFCs). In this paper, the effect of Na+ on the DMFC electrochemical response is studied by adding Na+ into the methanol water solution fed in the anode of DMFC. The dynamic variation of cell voltage results shows that the DMFC performance degraded by the presence of Na+ impurity, and the higher concentration of Na+ impurity, the higher poisoning rate is observed. In the meantime, an external reference electrode is used to measure the potential and impedance of the cathode and anode. It is found that the dramatic decrease of the cell voltage is mainly ascribed to the increase of the cathode overpotential which is caused by Na+ exchange with protons in the cathode catalyst layer. The electrochemical impedance measurements suggest that the lack of available protons and low oxygen concentration at the cathode catalytic sites contributed to this degradation. Furthermore, the recovery strategy is introduced and it is found that the poisoned MEA could be partly recovered by immersing in 0.5 M H2SO4 solution for 4 h. (C) 2010 Elsevier Ltd. All rights reserved.