Electrophoresis, Vol.31, No.14, 2338-2348, 2010
Chemometric and biological validation of a capillary electrophoresis metabolomic experiment of Schistosoma mansoni infection in mice
Metabonomic and metabolomic studies are increasingly utilized for biomarker identification in different fields, including biology of infection. The confluence of improved analytical platforms and the availability of powerful multivariate analysis software have rendered the multiparameter profiles generated by these omics platforms a user-friendly alternative to the established analysis methods where the quality and practice of a procedure is well defined. However, unlike traditional assays, validation methods for these new multivariate profiling tools have yet to be established. We propose a validation for models obtained by CE fingerprinting of urine from mice infected with the blood fluke Schistosoma mansoni. We have analysed urine samples from two sets of mice infected in an inter-laboratory experiment where different infection methods and animal husbandry procedures were employed in order to establish the core biological response to a S. mansoni infection. CE data were analysed using principal component analysis. Validation of the scores consisted of permutation scrambling (100 repetitions) and a manual validation method, using a third of the samples (not included in the model) as a test or prediction set. The validation yielded 100% specificity and 100% sensitivity, demonstrating the robustness of these models with respect to deciphering metabolic perturbations in the mouse due to a S. mansoni infection. A total of 20 metabolites across the two experiments were identified that significantly discriminated between S. mansoni-infected and noninfected control samples. Only one of these metabolites, allantoin, was identified as manifesting different behaviour in the two experiments. This study shows the reproducibility of CE-based metabolic profiling methods for disease characterization and screening and highlights the importance of much needed validation strategies in the emerging field of metabolomics.